Spelling suggestions: "subject:"welch c.method"" "subject:"welch 20method""
1 |
Robust Blind Spectral Estimation in the Presence of Impulsive NoiseKees, Joel Thomas 07 March 2019 (has links)
Robust nonparametric spectral estimation includes generating an accurate estimate of the Power Spectral Density (PSD) for a given set of data while trying to minimize the bias due to data outliers. Robust nonparametric spectral estimation is applied in the domain of electrical communications and digital signal processing when a PSD estimate of the electromagnetic spectrum is desired (often for the goal of signal detection), and when the spectrum is also contaminated by Impulsive Noise (IN). Power Line Communication (PLC) is an example of a communication environment where IN is a concern because power lines were not designed with the intent to transmit communication signals. There are many different noise models used to statistically model different types of IN, but one popular model that has been used for PLC and various other applications is called the Middleton Class A model, and this model is extensively used in this thesis. The performances of two different nonparametric spectral estimation methods are analyzed in IN: the Welch method and the multitaper method. These estimators work well under the common assumption that the receiver noise is characterized by Additive White Gaussian Noise (AWGN). However, the performance degrades for both of these estimators when they are used for signal detection in IN environments. In this thesis basic robust estimation theory is used to modify the Welch and multitaper methods in order to increase their robustness, and it is shown that the signal detection capabilities in IN is improved when using the modified robust estimators. / Master of Science / One application of blind spectral estimation is blind signal detection. Unlike a car radio, where the radio is specifically designed to receive AM and PM radio waves, sometimes it is useful for a radio to be able to detect the presence of transmitted signals whose characteristics are not known ahead of time. Cognitive radio is one application where this capability is useful. Often signal detection is inhibited by Additive White Gaussian Noise (AWGN). This is analogous to trying to hear a friend speak (signal detection) in a room full of people talking (background AWGN). However, some noise environments are more impulsive in nature. Using the previous analogy, the background noise could be loud banging caused by machinery; the noise will not be as constant as the chatter of the crowd, but it will be much louder. When power lines are used as a medium for electromagnetic communication (instead of just sending power), it is called Power Line Communication (PLC), and PLC is a good example of a system where the noise environment is impulsive. In this thesis, methods used for blind spectral estimation are modified to work reliably (or robustly) for impulsive noise environments.
|
2 |
Analýza ROC křivek zvukových signálů a jejich srovnání / Analysis and comparison of ROC curves of audio signalsPospíšil, Lukáš January 2017 (has links)
This thesis deals with oportunity of ROC curve usage in the description of methods that work with sound signals. Specifically, it focuses on ways of detecting of stress in speech signals. The detection itselfs is done in a range of frequencies of the sound signal. There is also a classifier designed using ROC curves that decides whether the input signal is stressed or not. The output of this thesis are findings gathered from analyses and also some recommendation based on those analyses.
|
Page generated in 0.0426 seconds