Spelling suggestions: "subject:"welded joints."" "subject:"melded joints.""
61 |
Behavior of full-scale bolted beam-to-column T-stub and clip angle connections under cyclic loadingSchrauben, Corey S. 12 1900 (has links)
No description available.
|
62 |
Fracture path transitions in peels tests of medium carbon steel spot weldsHalley, William G. 28 July 2008 (has links)
Fracture path transition, from interfacial fracture to a pulled button, in peel tests of spot welds in SAE 1039 steel was evaluated to determine the controlling material properties. Welds were tested in the as welded condition and after tempering at various temperatures to develop a range of hardness and strength in the weld metal. Two transitions were found, from complete interfacial fracture to partial interfacial and from partial interfacial fracture to a pulled button. Samples tempered at less than 350 °C exhibited complete interfacial fracture while those tempered at 500 °C or higher pulled full buttons. Each transition was accompanied by a large increase in the energy absorbed during fracture.
Both partial and complete interfacial fracture occurred by intergranular fracture along prior austenite grain boundaries. Optical microscopy utilizing a tint etch indicated that austenite existed as films on prior austenite grain boundaries of samples tempered at less than 500 °C and TEM confirmed that these films were austenite. Weld metal toughness was found to control the fracture path. If fracture initiation was delayed until the applied load caused plastic deformation of the coupons pulled button fracture occurred. Fracture initiation prior to plastic deformation of the coupons resulted in interfacial or partial interfacial fractures. A small secondary hardening peak was observed in samples tempered at 450 °C. Secondary hardening, which normally results from alloy carbide precipitation, was due to AlN precipitation in this aluminum killed plain carbon steel. / Ph. D.
|
63 |
Reliability study of SnPb and SnAg solder joints in PBGA packagesKim, Dong Hyun, 1968- 29 August 2008 (has links)
This study investigates the reliability of SnPb and SnAg solder joints in semiconductor packages subjected to thermal cycling. More specifically, solder joint crack growth and life are experimentally measured, and FEM models are run to explain the test results. Ultimately a life-prediction model is proposed for both SnPb and SnAg solder joint packages. Motorola 357-plastic ball grid array packages on printed wiring boards were thermal cycled with the following test parameters: SnPb and SnAg solders, three post-process conditions (aged, aircooled and quenched), four package layouts on the printed circuit boards (singledense, single-sparse, double-alternating, and double-dense), three accelerated thermal cycling protocols (0°C to 100°C, -40°C to 125°C, and -55°C to 125°C), and tests run at Motorola and the University of Texas. At predetermined thermal cycles, packages were removed from the environmental chambers, dyepenetrated, packages removed to expose the solder joints, and optical images taken. Images were processed to measure crack area, shape, orientation and length to show crack growth. Selected joints were sectioned and polished to investigate microstructure and failure modes. Selected boards were connected to an ANATECH event detector to monitor life from joint failures. FEM crack initiation and propagation models were developed to better understand failure mechanisms. Major experimental results are: 1) SnPb joints have about 50% faster crack growth rates than SnAg joints, subsequently SnPb joints have half the life of SnAg joints, 2) air-cooled and quenched packages had similar failure characteristics, but aged SnPb joints had lower life and aged SnAg joints had significantly longer life than the comparable nonaged joints, 3) double-dense package layout significantly decreased life (by 75%) over the other package layouts, which were similar to each other, 4) the test results at the two locations (UT and Motorola) were similar for SnPb solder joints, but significantly different for SnAg solder joints, and 5) the largest cracks occurred at the corners of joints just under the die edge. Major FEM simulation results are: 1) the crack initiation life of SnAg joints is approximately 100% longer than SnPb joints, 2) shear load is a major cause of crack growth, but the contribution of tensile load increases as the cracks grow, 3) primary cracks at the board interface appear to reduce the propagation rate of the primary crack on the package interface, 4) secondary cracks are suppressed when compressive stresses prevent voids from nucleating, 5) the double-dense configuration shows no PWB warping due to symmetry, and its stresses are larger than for the other package layouts, and (6) the stresses and strains for single-dense, single-sparse, and double-alternating package layouts are similar because the stresses/strains are dominated by local effects due to the CTE mismatch between the die and board. Based upon the experimental results and FEM simulations, a lifeprediction model based upon a severity metric was proposed. The metric estimates damage to the solder joints and links material properties and parameters associated with package layout and thermal test conditions to the time-dependent creep, time-independent plastic deformation, and a time-dependent and geometric effective stress of the solder. The severity metric predicted life very well for most of the data tested and was more accurate than the industry-standard life-prediction models for SnPb solder joints.
|
64 |
Through life reliability of a bulk carrierTsarouchas, Ioannis January 2001 (has links)
No description available.
|
65 |
Static and fatigue analyses of welded steel structures : some aspects towards lightweight designKhurshid, Mansoor January 2017 (has links)
The objectives of this thesis comprise of overcoming the challenges in designing lightweight welded structures such as material selection, choice of fatigue design methods, and increased performance by using improvement techniques. Material selection of welded joints is dependent on the filler and base material strengths. Partially and fully penetrated cruciform and butt welded joints were designed in under-matching, matching, and over-matching filler materials. Base material steel grades were S600MC, S700MC, and S960. Current design rules are developed for welds in steel up to yield strength of 700MPa. Therefore, design rules in Eurocode3, AWS d1.1, and BSK 07 were verified and recommendations for developing design rules for designing welded joints in S960 were concluded. Numerical methodology for estimating static strength of welded joints by simulating heat affected zone was also developed. Another objective of the thesis work was to overcome the challenges in selection of fatigue design methods. The available design curves in standards are developed for uniaxial stress states, however, in real life the welds in mechanical structures are subjected to complex multiaxial stress states. Furthermore; weld toe failures are frequently investigated, weld root failures are seldom investigated. Therefore, in this work the multiaxial fatigue strength of welded joints failing at the weld root was assessed using experiments and various nominal and local stress based approaches. Butt welded joints with different weld seam inclinations with respect to applied uniaxial loading were designed to assess the root fatigue strength in higher multiaxial stress ratio regime. The fatigue strength of multi-pass tube-to-plate welded joints subjected to internal pressure only and combined internal pressure and torsion in and 90° out of phase loading was also investigated. Test data generated in this thesis was evaluated together with the test data collected from literature. Last objective of the thesis included investigation of the increased performance in fatigue strength by post weld treatment methods such as HFMI. The behavior of residual stresses induced due to HFMI treatment during fatigue loading is studied. Numerical residual stress estimations and residual stress relaxation models are developed and the effect of various HFMI treatment process parameters and steel grade on the induced residual stress state is investigated. Specimens studied were non load carrying longitudinal attachments and simple plates. Residual stresses in both test specimens were measured using X-ray diffraction technique. / <p>QC 20170206</p>
|
66 |
Residual stresses in weldments in high-strength steels.Hwang, Jye-Suan January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Ocean Engineering. / Microfiche copy available in Archives and Engineering. / Includes bibliographical references. / M.S.
|
67 |
Slag-metal reactions during flux shielded arc weldingChai, Chang-Shung January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / by Chang-Shung Chai. / Ph.D.
|
68 |
The application of ablative laser ultrasonics to an aluminum plate, titanium tube, and welded jointsButler, Chad L. 04 June 1996 (has links)
Laser ultrasonics can be used to nondestructively evaluate structures to determine the existence and location of surface and interior flaws. The goal of this research was to determine if laser ultrasonic techniques can be applied to the inspection of aluminum plate. titanium tubes, and large welded plate structures. The research was carried out with a Q-switched pulsed ruby laser emitting light of 694 nm wavelength. Ultrasonic waves were experimentally generated and recorded in the aluminum plate and the titanium tube. A comprehensive literature study was completed to determine if the technique can be applied to welded structures. For the two experimental cases, the ultrasonic waves were received by a piezoelectric pinducer which was located on the opposite side of the plate. and on the outside of the tube. A digital oscilloscope captured the signals from the pinducer. The signals were then analyzed to determine echo spacing and frequency content. The physical characteristics of the laser pulse such as the energy and full-width-half-height and amplitudes were measured via a photodiode system and a calorimeter. The aluminum plate confirmed that the system was functioning properly, as the ultrasonic echoes that were generated matched the expected results from previous experimentation. The titanium tube data turned out to be difficult to interpret due to the complex geometry and mode conversion. The welding research showed that ultrasound can be used to identify many types of flaws in a welded joint. Currently, few researchers have applied the laser based ultrasound to flaw detection in finished welds, although several have looked at using the laser ultrasound as an input to a control system for a weld in progress. The literature research uncovered the need for further studies on the application of laser based ultrasound to flaw detection in completed welds. / Graduation date: 1997
|
69 |
Numerical simulation of arc welding process and its applicationCho, Min Hyun, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 146-149).
|
70 |
Kinetics of intermetallic growth at the interfaces of soldered metallizationsZribi, Anis B. January 2002 (has links) (PDF)
Thesis (Ph.D.)--State University of New York at Binghamton, 2002. / Adviser: Eric J. Cotts. Includes bibliographical references.
|
Page generated in 0.0912 seconds