• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 54
  • 54
  • 21
  • 18
  • 15
  • 13
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Well-posedness and blowup results for the swirl-free and axisymmetric primitive equations in a cylinder

SadatHosseiniKhajouei, Narges 02 May 2022 (has links)
This thesis is devoted to the motion of the incompressible and inviscid flow which is ax- isymmetric and swirl-free in a cylinder, where the hydrostatic approximation is made in the axial direction. It addresses the problem of local existence and uniqueness in the spaces of analytic functions for the Cauchy problem for the inviscid primitive equations, also called the hydrostatic incompressible Euler equations, on a cylinder, under some extra conditions. Following the method introduced by Kukavica-Temam-Vicol-Ziane in Int. J. Differ. Equ. 250 (2011) , we use the suitable extension of the Cauchy-Kowalewski theorem to construct locally in time, unique and real-analytic solution, and find the explicit rate of decay of the radius of real-analiticity. Furthermore, this thesis discusses the problem of finite-time blowup of the solution of the system of equations. Following a part of the method introduced by Wong in Proc Am Math Soc. 143 (2015), we prove that the first derivative of the radial velocity blows up in time, using primary functional analysis tools for a certain class of initial data. Taking the solution frozen at r = 0, we can apply an a priori estimate on the second derivative of the pressure term, to derive a Ricatti type inequality. / Graduate
2

Local and global well-posedness for nonlinear Dirac type equations

Candy, Timothy Lars January 2012 (has links)
We investigate the local and global well-posedness of a variety of nonlinear Dirac type equations with null structure on R1+1. In particular, we prove global existence in L2 for a nonlinear Dirac equation known as the Thirring model. Local existence in Hs for s > 0, and global existence for s > 1/2 , has recently been proven by Selberg-Tesfahun where they used Xs,b spaces together with a type of null form estimate. In contrast, motivated by the recent work of Machihara-Nakanishi-Tsugawa, we prove local existence in the scale invariant class L2 by using null coordinates. Moreover, again using null coordinates, we prove almost optimal local wellposedness for the Chern-Simons-Dirac equation which extends recent work of Huh. To prove global well-posedness for the Thirring model, we introduce a decomposition which shows the solution is linear (up to gauge transforms in U(1)), with an error term that can be controlled in L∞. This decomposition is also applied to prove global existence for the Chern-Simons-Dirac equation. This thesis also contains a study of bilinear estimates in Xs,b± (R2) spaces. These estimates are often used in the theory of nonlinear Dirac equations on R1+1. We prove estimates that are optimal up to endpoints by using dyadic decomposition together with some simplifications due to Tao. As an application, by using the I-method of Colliander-Keel-Staffilani-Takaoka-Tao, we extend the work of Tesfahun on global existence below the charge class for the Dirac-Klein- Gordon equation on R1+1. The final result contained in this thesis concerns the space-time Monopole equation. Recent work of Czubak showed that the space-time Monopole equation is locally well-posed in the Coulomb gauge for small initial data in Hs(R2) for s > 1/4 . Here we show that the Monopole equation has null structure in Lorenz gauge, and use this to prove local well-posedness for large initial data in Hs(R2) with s > 1/4.
3

Well-posedness and Control of the Korteweg-de Vries Equation on a Finite Domain

Caicedo Caceres, Miguel Andres 19 October 2015 (has links)
No description available.
4

Well-posedness of the one-dimensional derivative nonlinear Schrödinger equation

Moşincat, Răzvan Octavian January 2018 (has links)
This thesis is concerned with the well-posedness of the one-dimensional derivative non-linear Schrodinger equation (DNLS). In particular, we study the initial-value problem associated to DNLS with low-regularity initial data in two settings: (i) on the torus (namely with the periodic boundary condition) and (ii) on the real line. Our first main goal is to study the global-in-time behaviour of solutions to DNLS in the periodic setting, where global well-posedness is known to hold under a small mass assumption. In Chapter 2, we relax the smallness assumption on the mass and establish global well-posedness of DNLS for smooth initial data. In Chapter 3, we then extend this result for rougher initial data. In particular, we employ the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao and show the global well-posedness of the periodic DNLS at the end-point regularity. In the implementation of the I-method, we apply normal form reductions to construct higher order modified energy functionals. In Chapter 4, we turn our attention to the uniqueness of solutions to DNLS on the real line. By using an infinite iteration of normal form reductions introduced by Guo, Kwon, and Oh in the context of one-dimensional cubic NLS on the torus, we construct solutions to DNLS without using any auxiliary function space. As a result, we prove the unconditional uniqueness of solutions to DNLS on the real line in an almost end-point regularity.
5

Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation

Bulut, Aynur 25 October 2011 (has links)
We study the initial value problem for the defocusing nonlinear wave equation with cubic nonlinearity F(u)=|u|^2u in the energy-supercritical regime, that is dimensions d\geq 5. We prove that solutions to this equation satisfying an a priori bound in the critical homogeneous Sobolev space exist globally in time and scatter in the case of spatial dimensions d\geq 6 with general (possibly non-radial) initial data, and in the case of spatial dimension d=5 with radial initial data. / text
6

Nonhomogeneous Boundary Value Problems for the Korteweg-de Vries Equation on a Bounded Domain

Kramer, Eugene January 2009 (has links)
No description available.
7

Well-posedness and scattering of the Chern-Simons-Schrödinger system

Lim, Zhuo Min January 2017 (has links)
The subject of the present thesis is the Chern-Simons-Schrödinger system, which is a gauge-covariant Schrödinger system in two spatial dimensions with a long-range electromagnetic field. The present thesis studies two aspects of the system: that of well-posedness and that of the long-time behaviour. The first main result of the thesis concerns the large-data well-posedness of the initial-value problem for the Chern-Simons-Schrödinger system. We impose the Coulomb gauge to remove the gauge-invariance, in order to obtain a well-defined initial-value problem. We prove that, in the Coulomb gauge, the Chern-Simons-Schrödinger system is locally well-posed in the Sobolev spaces $H^s$ for $s\ge 1$, and that the solution map satisfies a weak Lipschitz continuity estimate. The main technical difficulty is the presence of a derivative nonlinearity, which rules out the naive iteration scheme for proving well-posedness. The key idea is to retain the non-perturbative part of the derivative nonlinearity in the principal operator, and to exploit the dispersive properties of the resulting paradifferential-type principal operator, in particular frequency-localised Strichartz estimates, using adaptations of the $U^p$ and $V^p$ spaces introduced by Koch and Tataru in other contexts. The other main result of the thesis characterises the large-time behaviour in the case where the interaction potential is the defocusing cubic term. We prove that the solution to the Chern-Simons-Schrödinger system in the Coulomb gauge, starting from a localised finite-energy initial datum, will scatter to a free Schrödinger wave at large times. The two crucial ingredients here are the discovery of a new conserved quantity, that of a pseudo-conformal energy, and the cubic null structure discovered by Oh and Pusateri, which reveals a subtle cancellation in the long-range electromagnetic effects. By exploiting pseudo-conformal symmetry, we also prove the existence of wave operators for the Chern-Simons-Schrödinger system in the Coulomb gauge: given a localised finite-energy final state, there exists a unique solution which scatters to that prescribed state.
8

Numerical analysis in energy dependent radiative transfer

Czuprynski, Kenneth Daniel 01 December 2017 (has links)
The radiative transfer equation (RTE) models the transport of radiation through a participating medium. In particular, it captures how radiation is scattered, emitted, and absorbed as it interacts with the medium. This process arises in numerous application areas, including: neutron transport in nuclear reactors, radiation therapy in cancer treatment planning, and the investigation of forming galaxies in astrophysics. As a result, there is great interest in the solution of the RTE in many different fields. We consider the energy dependent form of the RTE and allow media containing regions of negligible absorption. This particular case is not often considered due to the additional dimension and stability issues which arise by allowing vanishing absorption. In this thesis, we establish the existence and uniqueness of the underlying boundary value problem. We then proceed to develop a stable numerical algorithm for solving the RTE. Alongside the construction of the method, we derive corresponding error estimates. To show the validity of the algorithm in practice, we apply the algorithm to four different example problems. We also use these examples to validate our theoretical results.
9

An Optimal Transport Approach to Nonlinear Evolution Equations

Kamalinejad, Ehsan 13 December 2012 (has links)
Gradient flows of energy functionals on the space of probability measures with Wasserstein metric has proved to be a strong tool in studying certain mass conserving evolution equations. Such gradient flows provide an alternate formulation for the solutions of the corresponding evolution equations. An important condition, which is known to guarantees existence, uniqueness, and continuous dependence on initial data is that the corresponding energy functional be displacement convex. We introduce a relaxed notion of displacement convexity and we show that it still guarantees short time existence and uniqueness of Wasserstein gradient flows for higher order energy functionals which are not displacement convex in the standard sense. This extends the applicability of the gradient flow approach to larger family of energies. As an application, local and global well-posedness of different higher order non-linear evolution equations are derived. Examples include the thin-film equation and the quantum drift diffusion equation in one spatial variable.
10

About an autoconvolution problem arising in ultrashort laser pulse characterization

Bürger, Steven 03 November 2014 (has links) (PDF)
We are investigating a kernel-based autoconvolution problem, which has its origin in the physics of ultra short laser pulses. The task in this problem is to reconstruct a complex-valued function $x$ on a finite interval from measurements of its absolute value and a kernel-based autoconvolution of the form [[F(x)](s)=int k(s,t)x(s-t)x(t)de t.] This problem has not been studied in the literature. One reason might be that one has more information than in the classical autoconvolution case, where only the right hand side is available. Nevertheless we show that ill posedness phenomena may occur. We also propose an algorithm to solve the problem numerically and demonstrate its performance with artificial data. Since the algorithm fails to produce good results with real data and we suspect that the data for $|F(x)|$ are not dependable we also consider the whole problem with only $arg(F(x))$ given instead of $F(x)$.

Page generated in 0.0668 seconds