Spelling suggestions: "subject:"blobal wellposedness"" "subject:"blobal wellposeness""
1 |
Local and global well-posedness for nonlinear Dirac type equationsCandy, Timothy Lars January 2012 (has links)
We investigate the local and global well-posedness of a variety of nonlinear Dirac type equations with null structure on R1+1. In particular, we prove global existence in L2 for a nonlinear Dirac equation known as the Thirring model. Local existence in Hs for s > 0, and global existence for s > 1/2 , has recently been proven by Selberg-Tesfahun where they used Xs,b spaces together with a type of null form estimate. In contrast, motivated by the recent work of Machihara-Nakanishi-Tsugawa, we prove local existence in the scale invariant class L2 by using null coordinates. Moreover, again using null coordinates, we prove almost optimal local wellposedness for the Chern-Simons-Dirac equation which extends recent work of Huh. To prove global well-posedness for the Thirring model, we introduce a decomposition which shows the solution is linear (up to gauge transforms in U(1)), with an error term that can be controlled in L∞. This decomposition is also applied to prove global existence for the Chern-Simons-Dirac equation. This thesis also contains a study of bilinear estimates in Xs,b± (R2) spaces. These estimates are often used in the theory of nonlinear Dirac equations on R1+1. We prove estimates that are optimal up to endpoints by using dyadic decomposition together with some simplifications due to Tao. As an application, by using the I-method of Colliander-Keel-Staffilani-Takaoka-Tao, we extend the work of Tesfahun on global existence below the charge class for the Dirac-Klein- Gordon equation on R1+1. The final result contained in this thesis concerns the space-time Monopole equation. Recent work of Czubak showed that the space-time Monopole equation is locally well-posed in the Coulomb gauge for small initial data in Hs(R2) for s > 1/4 . Here we show that the Monopole equation has null structure in Lorenz gauge, and use this to prove local well-posedness for large initial data in Hs(R2) with s > 1/4.
|
2 |
Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equationBulut, Aynur 25 October 2011 (has links)
We study the initial value problem for the defocusing nonlinear wave equation with cubic nonlinearity F(u)=|u|^2u in the energy-supercritical regime, that is dimensions d\geq 5. We prove that solutions to this equation satisfying an a priori bound in the critical homogeneous Sobolev space exist globally in time and scatter in the case of spatial dimensions d\geq 6 with general (possibly non-radial) initial data, and in the case of spatial dimension d=5 with radial initial data. / text
|
3 |
Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indicesMontealegre Scott, Juan 25 September 2017 (has links)
No description available.
|
4 |
Almost well-posedness of the full water wave equation on the finite stripe domainZhu, Benben 18 August 2023 (has links)
The dissertation gives a rigorous study of surface waves on water of finite depth subjected to gravitational force. As for `water', it is an inviscid and incompressible fluid of constant density and the flow is irrotational.
The fluid is bounded above by a free surface separating the fluid from the air above (assumed to be a vacuum) and below by a rigid flat bottom. Then, the governing equations for the motion of the fluid flow are called Euler equations. If the initial fluid flow is prescribed at time zero, i.e., mathematically the initial condition for the Euler equations is given, the long-time existence of a unique solution for the Euler equations is still an open problem, even if the initial condition is small (or initial flow is almost motionless). The dissertation tries to make some progress for proving the long-time existence and show that the time interval of the existence is exponentially long, called almost global well-posedness, if the initial condition is small and satisfies some conditions. The main ideas for the study are from the corresponding almost global well-posedness result for surface waves on water of infinite depth. / Doctor of Philosophy / This dissertation concerns the mathematical study of surface waves on water of finite depth under gravitational force. Mathematically, water is considered as a fluid of constant density that has no viscosity and is incompressible. It is also assumed that any portion of the corresponding fluid flow is not rotating. Furthermore, the water is bounded above by a free surface separating the water from the air above and below by a rigid horizontal flat bottom. A natural question to ask is whether the water surface will keep smooth and will not break as time progresses, if a small disturbance on the flat free surface and the tranquil water-body is initially created. The dissertation tries to make some progress on this question by showing that under some mathematical and technical assumptions, the water surface remains smooth and will not break for a very long time by using the mathematical equations derived from the laws of physics.
|
5 |
Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções / Navier Stokes equations: The one million dollar problem from the point of view of continuation of solutionsSousa, Alexandre do Nascimento Oliveira 02 August 2017 (has links)
Neste trabalho consideramos o problema de Navier-Stokes em RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), onde u0 ∈ LN (Ω)N e Ω é um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima é localmente bem colocado e fornecemos condições para obter que estas soluções existem para todo t ≥ 0. Utilizamos técnicas de equações parabólicas semilineares considerando não linearidades com crescimento crítico desenvolvidas em (ARRIETA; CARVALHO, 1999). / In this work we we consider the Navier-Stokes problem on RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
|
6 |
Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções / Navier Stokes equations: The one million dollar problem from the point of view of continuation of solutionsAlexandre do Nascimento Oliveira Sousa 02 August 2017 (has links)
Neste trabalho consideramos o problema de Navier-Stokes em RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), onde u0 ∈ LN (Ω)N e Ω é um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima é localmente bem colocado e fornecemos condições para obter que estas soluções existem para todo t ≥ 0. Utilizamos técnicas de equações parabólicas semilineares considerando não linearidades com crescimento crítico desenvolvidas em (ARRIETA; CARVALHO, 1999). / In this work we we consider the Navier-Stokes problem on RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
|
7 |
Sobre uma família de EDP's do tipo escalar ativo em espaços críticos de Lebesgue e Fourier-Besov-Morrey / On a family of active scalar PDEs in Lebesgue and Fourier-Besov-Morrey critical spacesLima, Lidiane dos Santos Monteiro, 1984- 24 August 2018 (has links)
Orientador: Lucas Catão de Freitas Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-24T12:47:02Z (GMT). No. of bitstreams: 1
Lima_LidianedosSantosMonteiro_D.pdf: 2071234 bytes, checksum: 6370d2ea978f96792562cdc2e2406365 (MD5)
Previous issue date: 2014 / Resumo: Nesta tese consideramos uma família de EDPs dissipativas do tipo escalar ativo cujos campos velocidades são acoplados aos escalares através de operadores multiplicadores de Fourier que podem ser de alta ordem. Na primeira parte, provamos boa-colocação global, decaimento de normas Lp, e algumas propriedades de simetria, para dados iniciais no espaço de Lebesgue crítico e sem assumir condição de pequenez. Na segunda parte, introduzimos os espaços de Fourier-Besov-Morrey, o qual parece ser novo na analise de EDPs, com o objetivo de encontrar soluções auto-similares e considerar uma classe maior de acoplamentos e dados iniciais. Condições de pequenez na norma do espaço são assumidas para estes resultados. Além disso, mostramos um resultado de estabilidade assintótica e obtemos uma classe de soluções assintoticamente auto-similares / Abstract: In this thesis we consider a family of dissipative active scalar equations whose velocity fields are coupled by means of multiplier operators that can be of high-order. In the first part, we prove global well-posedness, decay of Lp's norms and some symmetry properties of solutions for initial data in the critical Lebesgue space and without smallness condition. In the second part, we introduce the Fourie-Besov-Morrey spaces, which seems to be new in the analysis of PDEs in order to find self-similar solutions and to consider a larger class of couplings and initial data. Smallness conditions on the norm of the space are assumed for these results. Furthermore, we show an asymptotic stability result and obtain a class of asymptotically self-similar solutions / Doutorado / Matematica / Doutora em Matemática
|
8 |
Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony / Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-MahonyMontealegre Scott, Juan 25 September 2017 (has links)
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0 / Dado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.
|
9 |
Strichartz estimates and the nonlinear Schrödinger-type equations / Estimations de Strichartz et les équations non-linéaires de type Schrödinger sur les variétésDinh, Van Duong 10 July 2018 (has links)
Cette thèse est consacrée à l'étude des aspects linéaires et non-linéaires des équations de type Schrödinger [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] Quand $sigma = 2$, il s'agit de l'équation de Schrödinger bien connue dans de nombreux contextes physiques tels que la mécanique quantique, l'optique non-linéaire, la théorie des champs quantiques et la théorie de Hartree-Fock. Quand $sigma in (0,2) backslash {1}$, c'est l'équation Schrödinger fractionnaire, qui a été découverte par Laskin (voir par exemple cite{Laskin2000} et cite{Laskin2002}) en lien avec l'extension de l'intégrale de Feynman, des chemins quantiques de type brownien à ceux de Lévy. Cette équation apparaît également dans des modèles de vagues (voir par exemple cite{IonescuPusateri} et cite{Nguyen}). Quand $sigma = 1$, c'est l'équation des demi-ondes qui apparaît dans des modèles de vagues (voir cite{IonescuPusateri}) et dans l'effondrement gravitationnel (voir cite{ElgartSchlein}, cite{FrohlichLenzmann}). Quand $sigma = 4$, c'est l'équation Schrödinger du quatrième ordre ou biharmonique introduite par Karpman cite{Karpman} et par Karpman-Shagalov cite{KarpmanShagalov} pour prendre en compte le rôle de la dispersion du quatrième ordre dans la propagation d'un faisceau laser intense dans un milieu massif avec non-linéarité de Kerr. Cette thèse est divisée en deux parties. La première partie étudie les estimations de Strichartz pour des équations de type Schrödinger sur des variétés comprenant l'espace plat euclidien, les variétés compactes sans bord et les variétés asymptotiquement euclidiennes. Ces estimations de Strichartz sont utiles pour l'étude de l'équations dispersives non-linéaire à régularité basse. La seconde partie concerne l'étude des aspects non-linéaires tels que les caractères localement puis globalement bien posés sous l'espace d'énergie, ainsi que l'explosion de solutions peu régulières pour des équations non-linéaires de type Schrödinger. [...] / This dissertation is devoted to the study of linear and nonlinear aspects of the Schrödinger-type equations [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] When $sigma = 2$, it is the well-known Schrödinger equation arising in many physical contexts such as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When $sigma in (0,2) backslash {1}$, it is the fractional Schrödinger equation, which was discovered by Laskin (see e.g. cite{Laskin2000} and cite{Laskin2002}) owing to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This equation also appears in the water waves model (see e.g. cite{IonescuPusateri} and cite{Nguyen}). When $sigma = 1$, it is the half-wave equation which arises in water waves model (see cite{IonescuPusateri}) and in gravitational collapse (see cite{ElgartSchlein}, cite{FrohlichLenzmann}). When $sigma =4$, it is the fourth-order or biharmonic Schrödinger equation introduced by Karpman cite {Karpman} and by Karpman-Shagalov cite{KarpmanShagalov} taking into account the role of small fourth-order dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity. This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-type equations on manifolds including the flat Euclidean space, compact manifolds without boundary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions for nonlinear Schrödinger-type equations.[...]
|
Page generated in 0.067 seconds