Spelling suggestions: "subject:"local dnd blobal well posedness"" "subject:"local dnd blobal well closedness""
1 |
Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indicesMontealegre Scott, Juan 25 September 2017 (has links)
No description available.
|
2 |
Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções / Navier Stokes equations: The one million dollar problem from the point of view of continuation of solutionsSousa, Alexandre do Nascimento Oliveira 02 August 2017 (has links)
Neste trabalho consideramos o problema de Navier-Stokes em RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), onde u0 ∈ LN (Ω)N e Ω é um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima é localmente bem colocado e fornecemos condições para obter que estas soluções existem para todo t ≥ 0. Utilizamos técnicas de equações parabólicas semilineares considerando não linearidades com crescimento crítico desenvolvidas em (ARRIETA; CARVALHO, 1999). / In this work we we consider the Navier-Stokes problem on RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
|
3 |
Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções / Navier Stokes equations: The one million dollar problem from the point of view of continuation of solutionsAlexandre do Nascimento Oliveira Sousa 02 August 2017 (has links)
Neste trabalho consideramos o problema de Navier-Stokes em RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), onde u0 ∈ LN (Ω)N e Ω é um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima é localmente bem colocado e fornecemos condições para obter que estas soluções existem para todo t ≥ 0. Utilizamos técnicas de equações parabólicas semilineares considerando não linearidades com crescimento crítico desenvolvidas em (ARRIETA; CARVALHO, 1999). / In this work we we consider the Navier-Stokes problem on RN <div style=\"width: 50%; margin: auto;\">ut = Δu — ∇π + f (t) — (u .∇)u, x∈ Ω <br />div(u) = 0, x ∈ Ω <br />u = 0, x ∈ ∂ Ω <br />u(0, x) = u0 (x), where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
|
4 |
Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony / Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-MahonyMontealegre Scott, Juan 25 September 2017 (has links)
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0 / Dado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.
|
Page generated in 0.1298 seconds