• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indices

Montealegre Scott, Juan 25 September 2017 (has links)
No description available.
2

Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções / Navier Stokes equations: The one million dollar problem from the point of view of continuation of solutions

Sousa, Alexandre do Nascimento Oliveira 02 August 2017 (has links)
Neste trabalho consideramos o problema de Navier-Stokes em RN <div style=\"width: 50%; margin: auto;\">ut = &Delta;u &mdash; &nabla;&pi; + f (t) &mdash; (u .&nabla;)u,&nbsp; &nbsp;x&isin; &Omega; <br />div(u) = 0,&nbsp; &nbsp; x &isin; &Omega; <br />u = 0,&nbsp; &nbsp;&nbsp;x &isin; &part; &Omega; <br />u(0, x) = u0 (x), onde u0 &isin; LN (&Omega;)N e &Omega; &eacute; um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima &eacute; localmente bem colocado e fornecemos condi&ccedil;&otilde;es para obter que estas solu&ccedil;&otilde;es existem para todo t &ge; 0. Utilizamos t&eacute;cnicas de equa&ccedil;&otilde;es parab&oacute;licas semilineares considerando n&atilde;o linearidades com crescimento cr&iacute;tico desenvolvidas em (ARRIETA; CARVALHO, 1999). / In this work we we consider the Navier-Stokes problem on RN <div style=\"width: 50%; margin: auto;\">ut = &Delta;u &mdash; &nabla;&pi; + f (t) &mdash; (u .&nabla;)u,&nbsp; &nbsp;x&isin; &Omega; <br />div(u) = 0,&nbsp; &nbsp; x &isin; &Omega; <br />u = 0,&nbsp; &nbsp;&nbsp;x &isin; &part; &Omega; <br />u(0, x) = u0 (x), where u0 &isin; LN (&Omega;)N and &Omega; is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t &ge; 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
3

Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções / Navier Stokes equations: The one million dollar problem from the point of view of continuation of solutions

Alexandre do Nascimento Oliveira Sousa 02 August 2017 (has links)
Neste trabalho consideramos o problema de Navier-Stokes em RN <div style=\"width: 50%; margin: auto;\">ut = &Delta;u &mdash; &nabla;&pi; + f (t) &mdash; (u .&nabla;)u,&nbsp; &nbsp;x&isin; &Omega; <br />div(u) = 0,&nbsp; &nbsp; x &isin; &Omega; <br />u = 0,&nbsp; &nbsp;&nbsp;x &isin; &part; &Omega; <br />u(0, x) = u0 (x), onde u0 &isin; LN (&Omega;)N e &Omega; &eacute; um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima &eacute; localmente bem colocado e fornecemos condi&ccedil;&otilde;es para obter que estas solu&ccedil;&otilde;es existem para todo t &ge; 0. Utilizamos t&eacute;cnicas de equa&ccedil;&otilde;es parab&oacute;licas semilineares considerando n&atilde;o linearidades com crescimento cr&iacute;tico desenvolvidas em (ARRIETA; CARVALHO, 1999). / In this work we we consider the Navier-Stokes problem on RN <div style=\"width: 50%; margin: auto;\">ut = &Delta;u &mdash; &nabla;&pi; + f (t) &mdash; (u .&nabla;)u,&nbsp; &nbsp;x&isin; &Omega; <br />div(u) = 0,&nbsp; &nbsp; x &isin; &Omega; <br />u = 0,&nbsp; &nbsp;&nbsp;x &isin; &part; &Omega; <br />u(0, x) = u0 (x), where u0 &isin; LN (&Omega;)N and &Omega; is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t &ge; 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
4

Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony / Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony

Montealegre Scott, Juan 25 September 2017 (has links)
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0 / Dado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.

Page generated in 0.1298 seconds