• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indices

Montealegre Scott, Juan 25 September 2017 (has links)
No description available.
2

Global Well-posedness for the Derivative Nonlinear Schrödinger Equation Through Inverse Scattering

Liu, Jiaqi 01 January 2017 (has links)
We study the Cauchy problem of the derivative nonlinear Schrodinger equation in one space dimension. Using the method of inverse scattering, we prove global well-posedness of the derivative nonlinear Schrodinger equation for initial conditions in a dense and open subset of weighted Sobolev space that can support bright solitons.
3

Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony / Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony

Montealegre Scott, Juan 25 September 2017 (has links)
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0 / Dado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.

Page generated in 0.1301 seconds