Spelling suggestions: "subject:"local wellposedness"" "subject:"local wellposeness""
1 |
Well-posedness of the one-dimensional derivative nonlinear Schrödinger equationMoşincat, Răzvan Octavian January 2018 (has links)
This thesis is concerned with the well-posedness of the one-dimensional derivative non-linear Schrodinger equation (DNLS). In particular, we study the initial-value problem associated to DNLS with low-regularity initial data in two settings: (i) on the torus (namely with the periodic boundary condition) and (ii) on the real line. Our first main goal is to study the global-in-time behaviour of solutions to DNLS in the periodic setting, where global well-posedness is known to hold under a small mass assumption. In Chapter 2, we relax the smallness assumption on the mass and establish global well-posedness of DNLS for smooth initial data. In Chapter 3, we then extend this result for rougher initial data. In particular, we employ the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao and show the global well-posedness of the periodic DNLS at the end-point regularity. In the implementation of the I-method, we apply normal form reductions to construct higher order modified energy functionals. In Chapter 4, we turn our attention to the uniqueness of solutions to DNLS on the real line. By using an infinite iteration of normal form reductions introduced by Guo, Kwon, and Oh in the context of one-dimensional cubic NLS on the torus, we construct solutions to DNLS without using any auxiliary function space. As a result, we prove the unconditional uniqueness of solutions to DNLS on the real line in an almost end-point regularity.
|
2 |
About an autoconvolution problem arising in ultrashort laser pulse characterizationBürger, Steven 03 November 2014 (has links) (PDF)
We are investigating a kernel-based autoconvolution problem, which has its origin in the physics of ultra short laser pulses. The task in this problem is to reconstruct a complex-valued function $x$ on a finite interval from measurements of its absolute value and a kernel-based autoconvolution of the form [[F(x)](s)=int k(s,t)x(s-t)x(t)de t.]
This problem has not been studied in the literature. One reason might be that one has more information than in the classical autoconvolution case, where only the right hand side is available. Nevertheless we show that ill posedness phenomena may occur. We also propose an algorithm to solve the problem numerically and demonstrate its performance with artificial data. Since the algorithm fails to produce good results with real data and we suspect that the data for $|F(x)|$ are not dependable we also consider the whole problem with only $arg(F(x))$ given instead of $F(x)$.
|
3 |
LOCAL WELL POSEDNESS, REGULARITY, AND STABILITY FOR THE TIME-FRACTIONAL BURGERS PIDES ON THE WHOLE ONE, TWO, AND THREE DIMENSIONAL SPACESTerzi, Marina 30 July 2020 (has links)
No description available.
|
4 |
About an autoconvolution problem arising in ultrashort laser pulse characterizationBürger, Steven January 2014 (has links)
We are investigating a kernel-based autoconvolution problem, which has its origin in the physics of ultra short laser pulses. The task in this problem is to reconstruct a complex-valued function $x$ on a finite interval from measurements of its absolute value and a kernel-based autoconvolution of the form [[F(x)](s)=int k(s,t)x(s-t)x(t)de t.]
This problem has not been studied in the literature. One reason might be that one has more information than in the classical autoconvolution case, where only the right hand side is available. Nevertheless we show that ill posedness phenomena may occur. We also propose an algorithm to solve the problem numerically and demonstrate its performance with artificial data. Since the algorithm fails to produce good results with real data and we suspect that the data for $|F(x)|$ are not dependable we also consider the whole problem with only $arg(F(x))$ given instead of $F(x)$.
|
5 |
About a deficit in low order convergence rates on the example of autoconvolutionBürger, Steven, Hofmann, Bernd 18 December 2013 (has links) (PDF)
We revisit in L2-spaces the autoconvolution equation x ∗ x = y with solutions which are real-valued or complex-valued functions x(t) defined on a finite real interval, say t ∈ [0,1]. Such operator equations of quadratic type occur in physics of spectra, in optics and in stochastics, often as part of a more complex task. Because of their weak nonlinearity deautoconvolution problems are not seen as difficult and hence little attention is paid to them wrongly. In this paper, we will indicate on the example of autoconvolution a deficit in low order convergence rates for regularized solutions of nonlinear ill-posed operator equations F(x)=y with solutions x† in a Hilbert space setting. So for the real-valued version of the deautoconvolution problem, which is locally ill-posed everywhere, the classical convergence rate theory developed for the Tikhonov regularization of nonlinear ill-posed problems reaches its limits if standard source conditions using the range of F (x† )∗ fail. On the other hand, convergence rate results based on Hölder source conditions with small Hölder exponent and logarithmic source conditions or on the method of approximate source conditions are not applicable since qualified nonlinearity conditions are required which cannot be shown for the autoconvolution case according to current knowledge. We also discuss the complex-valued version of autoconvolution with full data on [0,2] and see that ill-posedness must be expected if unbounded amplitude functions are admissible. As a new detail, we present situations of local well-posedness if the domain of the autoconvolution operator is restricted to complex L2-functions with a fixed and uniformly bounded modulus function.
|
6 |
About a deficit in low order convergence rates on the example of autoconvolutionBürger, Steven, Hofmann, Bernd January 2013 (has links)
We revisit in L2-spaces the autoconvolution equation x ∗ x = y with solutions which are real-valued or complex-valued functions x(t) defined on a finite real interval, say t ∈ [0,1]. Such operator equations of quadratic type occur in physics of spectra, in optics and in stochastics, often as part of a more complex task. Because of their weak nonlinearity deautoconvolution problems are not seen as difficult and hence little attention is paid to them wrongly. In this paper, we will indicate on the example of autoconvolution a deficit in low order convergence rates for regularized solutions of nonlinear ill-posed operator equations F(x)=y with solutions x† in a Hilbert space setting. So for the real-valued version of the deautoconvolution problem, which is locally ill-posed everywhere, the classical convergence rate theory developed for the Tikhonov regularization of nonlinear ill-posed problems reaches its limits if standard source conditions using the range of F (x† )∗ fail. On the other hand, convergence rate results based on Hölder source conditions with small Hölder exponent and logarithmic source conditions or on the method of approximate source conditions are not applicable since qualified nonlinearity conditions are required which cannot be shown for the autoconvolution case according to current knowledge. We also discuss the complex-valued version of autoconvolution with full data on [0,2] and see that ill-posedness must be expected if unbounded amplitude functions are admissible. As a new detail, we present situations of local well-posedness if the domain of the autoconvolution operator is restricted to complex L2-functions with a fixed and uniformly bounded modulus function.
|
7 |
Strichartz estimates and the nonlinear Schrödinger-type equations / Estimations de Strichartz et les équations non-linéaires de type Schrödinger sur les variétésDinh, Van Duong 10 July 2018 (has links)
Cette thèse est consacrée à l'étude des aspects linéaires et non-linéaires des équations de type Schrödinger [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] Quand $sigma = 2$, il s'agit de l'équation de Schrödinger bien connue dans de nombreux contextes physiques tels que la mécanique quantique, l'optique non-linéaire, la théorie des champs quantiques et la théorie de Hartree-Fock. Quand $sigma in (0,2) backslash {1}$, c'est l'équation Schrödinger fractionnaire, qui a été découverte par Laskin (voir par exemple cite{Laskin2000} et cite{Laskin2002}) en lien avec l'extension de l'intégrale de Feynman, des chemins quantiques de type brownien à ceux de Lévy. Cette équation apparaît également dans des modèles de vagues (voir par exemple cite{IonescuPusateri} et cite{Nguyen}). Quand $sigma = 1$, c'est l'équation des demi-ondes qui apparaît dans des modèles de vagues (voir cite{IonescuPusateri}) et dans l'effondrement gravitationnel (voir cite{ElgartSchlein}, cite{FrohlichLenzmann}). Quand $sigma = 4$, c'est l'équation Schrödinger du quatrième ordre ou biharmonique introduite par Karpman cite{Karpman} et par Karpman-Shagalov cite{KarpmanShagalov} pour prendre en compte le rôle de la dispersion du quatrième ordre dans la propagation d'un faisceau laser intense dans un milieu massif avec non-linéarité de Kerr. Cette thèse est divisée en deux parties. La première partie étudie les estimations de Strichartz pour des équations de type Schrödinger sur des variétés comprenant l'espace plat euclidien, les variétés compactes sans bord et les variétés asymptotiquement euclidiennes. Ces estimations de Strichartz sont utiles pour l'étude de l'équations dispersives non-linéaire à régularité basse. La seconde partie concerne l'étude des aspects non-linéaires tels que les caractères localement puis globalement bien posés sous l'espace d'énergie, ainsi que l'explosion de solutions peu régulières pour des équations non-linéaires de type Schrödinger. [...] / This dissertation is devoted to the study of linear and nonlinear aspects of the Schrödinger-type equations [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] When $sigma = 2$, it is the well-known Schrödinger equation arising in many physical contexts such as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When $sigma in (0,2) backslash {1}$, it is the fractional Schrödinger equation, which was discovered by Laskin (see e.g. cite{Laskin2000} and cite{Laskin2002}) owing to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This equation also appears in the water waves model (see e.g. cite{IonescuPusateri} and cite{Nguyen}). When $sigma = 1$, it is the half-wave equation which arises in water waves model (see cite{IonescuPusateri}) and in gravitational collapse (see cite{ElgartSchlein}, cite{FrohlichLenzmann}). When $sigma =4$, it is the fourth-order or biharmonic Schrödinger equation introduced by Karpman cite {Karpman} and by Karpman-Shagalov cite{KarpmanShagalov} taking into account the role of small fourth-order dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity. This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-type equations on manifolds including the flat Euclidean space, compact manifolds without boundary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions for nonlinear Schrödinger-type equations.[...]
|
Page generated in 0.0472 seconds