Spelling suggestions: "subject:"cells -- desting"" "subject:"cells -- ingesting""
1 |
Response of indigenous heterotrophic groundwater bacteria to low organic substrate availabilityKing, Laura Kathryn 25 August 2008 (has links)
Groundwater is one of the least studied environments, yet many people rely on groundwater for their sole drinking water supply. Little is known about the indigenous microflora, but it is believed to be similar to oceanic planktobacteria due to the low nutrient concentrations occurring in both ecosystems. That is, groundwater microorganisms are atypically small, mostly Gram-negative cells. Also like the oceanic planktobacteria, they may have no affinity for surface attachment and may rely on dissolved low molecular weight organic substrates in dilute solution for their nutrition. Periods of metabolic dormancy may occur when natural substrate concentrations drop below the level required to sustain vegetative cell function. In these studies total cells present were determined by 4'6-diamidino-2-phenylindole (DAPI) epifluorescent counts. The percentage of those bacteria which were metabolically active was determined by a modification of the 2-(p-iodophenyl)-3-(p- nitrophenyl)- 5-phenyl tetrazolium chloride (INT) reduction method. Advantages of this method over others include more specific fluorochrome staining, ease of transfer of the cells to the slide, time saved, and ease of microscopic viewing. Heterotrophic uptake of aspartate, succinate, glucose and fructose by indigenous bacteria was measured and calculations of maximum uptake velocity (V<sub>max</sub>) and a constant (K<sub>t</sub> + S<sub>n</sub>) equalling the natural substrate concentration (S<sub>n</sub>) plus the half-saturation concentration (K<sub>t</sub>) were made based on net assimilation (cellular retention) of radiolabeled substrate. Total counts by DAPI staining were 4-12.1 x 10⁴ cells/ml of which 17.4 to 20.85% were metabolically active (INT+). Mean maximum uptake velocities ranged from 1.73 to 2000 nmol/l/hr with aspartate being taken up at the highest rate followed by fructose, succinate and glucose. / Master of Science
|
2 |
Applications and optimization of response surface methodologies in high-pressure, high-temperature gaugesHässig Fonseca, Santiago 05 July 2012 (has links)
High-Pressure, High-Temperature (HPHT) pressure gauges are commonly used in oil wells for pressure transient analysis. Mathematical models are used to relate input perturbation (e.g., flow rate transients) with output responses (e.g., pressure transients), and subsequently, solve an inverse problem that infers reservoir parameters. The indispensable use of pressure data in well testing motivates continued improvement in the accuracy (quality), sampling rate (quantity), and autonomy (lifetime) of pressure gauges.
This body of work presents improvements in three areas of high-pressure, high-temperature quartz memory gauge technology: calibration accuracy, multi-tool signal alignment, and tool autonomy estimation. The discussion introduces the response surface methodology used to calibrate gauges, develops accuracy and autonomy estimates based on controlled tests, and where applicable, relies on field gauge drill stem test data to validate accuracy predictions. Specific contributions of this work include:
- Application of the unpaired sample t-test, a first in quartz sensor calibration, which resulted in reduction of uncertainty in gauge metrology by a factor of 2.25, and an improvement in absolute and relative tool accuracies of 33% and 56%, accordingly. Greater accuracy yields more reliable data and a more sensitive characterization of well parameters.
- Post-processing of measurements from 2+ tools using a dynamic time warp algorithm that mitigates gauge clock drifts. Where manual alignment methods account only for linear shifts, the dynamic algorithm elastically corrects nonlinear misalignments accumulated throughout a job with an accuracy that is limited only by the clock's time resolution.
- Empirical modeling of tool autonomy based on gauge selection, battery pack, sampling mode, and average well temperature. A first of its kind, the model distills autonomy into two independent parameters, each a function of the same two orthogonal factors: battery power capacity and gauge current consumption as functions of sampling mode and well temperature -- a premise that, for 3+ gauge and battery models, reduces the design of future autonomy experiments by at least a factor of 1.5.
|
Page generated in 0.0788 seconds