• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 2
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Primer on Well Water Sampling for Volatile Organic Substances

Wilson, L. Graham, Dworkin, Judith M. 09 1900 (has links)
Research Project Technical Completion Report, Project No. G828-24, Prepared for the U.S. Department of the Interior, September 1984. / / With the growing problem of ground water contamination by volatile organic substances, drinking water sampling programs are being initiated throughout the United States. A need was recognized for a manual on well water sampling that would bridge the gap between highly technical documents and over -simplified reviews. A primer was therefore developed on establishing and implementing a sampling program. Current information was collected by means of both library research and extensive contact with public agency employees and practicing hydrologists. Portions of a sampling program that required explanation included selection of priority wells, proper sampling at the well head, sample preservation and shipment, chain of custody procedures, laboratory selection, quality assurance and data evaluation. Explanation of these steps is intended to help ensure the legal defensibility of any collected data.
2

Response of indigenous heterotrophic groundwater bacteria to low organic substrate availability

King, Laura Kathryn 25 August 2008 (has links)
Groundwater is one of the least studied environments, yet many people rely on groundwater for their sole drinking water supply. Little is known about the indigenous microflora, but it is believed to be similar to oceanic planktobacteria due to the low nutrient concentrations occurring in both ecosystems. That is, groundwater microorganisms are atypically small, mostly Gram-negative cells. Also like the oceanic planktobacteria, they may have no affinity for surface attachment and may rely on dissolved low molecular weight organic substrates in dilute solution for their nutrition. Periods of metabolic dormancy may occur when natural substrate concentrations drop below the level required to sustain vegetative cell function. In these studies total cells present were determined by 4'6-diamidino-2-phenylindole (DAPI) epifluorescent counts. The percentage of those bacteria which were metabolically active was determined by a modification of the 2-(p-iodophenyl)-3-(p- nitrophenyl)- 5-phenyl tetrazolium chloride (INT) reduction method. Advantages of this method over others include more specific fluorochrome staining, ease of transfer of the cells to the slide, time saved, and ease of microscopic viewing. Heterotrophic uptake of aspartate, succinate, glucose and fructose by indigenous bacteria was measured and calculations of maximum uptake velocity (V<sub>max</sub>) and a constant (K<sub>t</sub> + S<sub>n</sub>) equalling the natural substrate concentration (S<sub>n</sub>) plus the half-saturation concentration (K<sub>t</sub>) were made based on net assimilation (cellular retention) of radiolabeled substrate. Total counts by DAPI staining were 4-12.1 x 10⁴ cells/ml of which 17.4 to 20.85% were metabolically active (INT+). Mean maximum uptake velocities ranged from 1.73 to 2000 nmol/l/hr with aspartate being taken up at the highest rate followed by fructose, succinate and glucose. / Master of Science
3

Iron oxidation coupled with biodegradation of organic contaminants in a simulated ground water system

Achanta, Srinivasa G. 18 August 2009 (has links)
Aerobic degradation of hydrocarbon contaminants in anaerobic ground water would be enhanced by oxygenating the water. However, when a contaminated ground water contains high concentrations of reduced iron, competition for oxygen may occur. This study was designed to study this competition. The oxidation of iron and biodegradation of organics was studied in a 12 in X 2.5 in soil column by injecting either oxygen microbubbles or hydrogen peroxide into the soil matrix to provide a source of oxygen. The effluent concentrations of organic and inorganic constituents and the head losses were monitored after injecting oxygen. First, iron oxidation alone was studied. Second, biodegradation of the organic compound was studied. Finally, the simultaneous iron oxidation and biodegradation of organic compound was carried out. The effect of different Fe2+ concentrations in water on the biodegradation of the organic contaminants was evaluated. It was intended to determine whether iron oxidation or biodegradation of organic compound would cause more plugging in soil. The oxidation efficiencies using oxygen microbubbles and peroxide were compared. It was concluded that at high concentrations of Fe2+ in water, iron is rapidly oxidized utilizing most of the available oxygen. At low Fe2+ concentrations, biodegradation efficiency was high. Oxygen microbubbles were found to be slightly more effective than hydrogen peroxide in transferring oxygen to ground water and oxidizing iron or biodegrading organic contaminants. Soil plugging was found to occur regardless of the method of oxygen delivery. The use of coarse media removal system seemed to solve the problem. / Master of Science
4

Development of local sampling and monitoring protocol for radioactive elements in fractured rock Acquifers in South Africa using a case study in Beaufort West

Gaathier Mahed January 2009 (has links)
<p>The aim of this study was to test whether one could use the same methods as used for sampling heavy metals and apply them to radioactive elements. Furthermore a sampling protocol was developed, the first of its kind, for the sampling of radioactive elements in fractured rock aquifers. This was achieved by initially examining local as well as international manuals and methods. The aforementioned was done in conjunction with a literature review of the movement of radioactive elements in these fractured rock aquifers. Beaufort West was utilised as a study area and the geology, hydrogeology and topography was outlined. Background radioactivity was generally acceptable except for two samples which were anomalously high. Taking cognisance of the methods used, as well as those previously applied in the area and abroad, a sampling protocol for radioactive elements in fractured rock aquifers was developed and attached as an appendix. In conclusion it was suggested that multiple methods be tested on one well in order to check whether similar results would occur. This would thus determine the best applicable methods. Also it was proposed that a new method, called DGT sampling, be applied in order to gain a time weighted average of the heavy metals and radioactive elements in groundwater. It could also be clearly seen, by comparing historical data and the current data, that the methods used for sampling heavy metal can be applied to radioactivity.</p>
5

Advances in Modeling, Sampling, and Assessing the Anthropogenic Contamination Potential of Fractured Bedrock Aquifers

Kozuskanich, John C 01 March 2011 (has links)
Groundwater is an important resource that is relied on by approximately half of the world’s population for drinking water supply. Source water protection efforts rely on an understanding of flow and contaminant transport processes in aquifers. Bedrock aquifers are considered to be particularly vulnerable to contamination if the overburden cover is thin or inadequate. The objective of this study is to further the understanding of modeling, sampling, and the potential for anthropogenic contamination in fractured bedrock aquifers. Two numerical modeling studies were conducted to examine geochemical groundwater sampling using multi-level piezometers and the role of discretization in a discrete fracture radial transport scenario. Additionally, two field investigations were performed to study the variability of bacterial counts in pumped groundwater samples and the potential for anthropogenic contamination in a bedrock aquifer having variable overburden cover in a semi-urban setting. Results from the numerical modeling showed that choosing sand pack and screen materials similar in hydraulic conductivity to each other and the fractures intersecting the borehole can significantly reduce the required purge volume. Spatiotemporal discretization was found to be a crucial component of the numerical modeling of solute transport and verification of the solution domain using an analytical or semi-analytical solution is needed. Results from the field investigations showed fecal indicator bacterial concentrations typically decrease on the order of one to two orders of magnitude from the onset of pumping. A multi-sample approach that includes collection at early-time during the purging is recommended when sampling fecal indicator bacteria for the purpose of assessing drinking water quality. Surface contaminants in areas with thin or inadequate overburden cover can migrate quickly and deeply into the bedrock aquifer via complex fracture networks that act as preferential pathways. While the presence of fecal indicator bacteria in groundwater samples signifies a possible health risk through human consumption, it was the suite of pharmaceuticals and personal care products that allowed the identification of septic systems and agriculture as the dominant sources of contamination. Land-use planning and source water protection initiatives need to recognize the sensitivity of fractured bedrock aquifers to contamination. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2011-02-28 17:27:54.806
6

Development of local sampling and monitoring protocol for radioactive elements in fractured rock Acquifers in South Africa using a case study in Beaufort West

Gaathier Mahed January 2009 (has links)
<p>The aim of this study was to test whether one could use the same methods as used for sampling heavy metals and apply them to radioactive elements. Furthermore a sampling protocol was developed, the first of its kind, for the sampling of radioactive elements in fractured rock aquifers. This was achieved by initially examining local as well as international manuals and methods. The aforementioned was done in conjunction with a literature review of the movement of radioactive elements in these fractured rock aquifers. Beaufort West was utilised as a study area and the geology, hydrogeology and topography was outlined. Background radioactivity was generally acceptable except for two samples which were anomalously high. Taking cognisance of the methods used, as well as those previously applied in the area and abroad, a sampling protocol for radioactive elements in fractured rock aquifers was developed and attached as an appendix. In conclusion it was suggested that multiple methods be tested on one well in order to check whether similar results would occur. This would thus determine the best applicable methods. Also it was proposed that a new method, called DGT sampling, be applied in order to gain a time weighted average of the heavy metals and radioactive elements in groundwater. It could also be clearly seen, by comparing historical data and the current data, that the methods used for sampling heavy metal can be applied to radioactivity.</p>
7

Development of local sampling and monitoring protocol for radioactive elements in fractured rock Acquifers in South Africa using a case study in Beaufort West

Mahed, Gaathier January 2009 (has links)
Magister Scientiae - MSc / The aim of this study was to test whether one could use the same methods as used for sampling heavy metals and apply them to radioactive elements. Furthermore a sampling protocol was developed, the first of its kind, for the sampling of radioactive elements in fractured rock aquifers. This was achieved by initially examining local as well as international manuals and methods. The aforementioned was done in conjunction with a literature review of the movement of radioactive elements in these fractured rock aquifers. Beaufort West was utilised as a study area and the geology, hydrogeology and topography was outlined. Background radioactivity was generally acceptable except for two samples which were anomalously high. Taking cognisance of the methods used, as well as those previously applied in the area and abroad, a sampling protocol for radioactive elements in fractured rock aquifers was developed and attached as an appendix. In conclusion it was suggested that multiple methods be tested on one well in order to check whether similar results would occur. This would thus determine the best applicable methods. Also it was proposed that a new method, called DGT sampling, be applied in order to gain a time weighted average of the heavy metals and radioactive elements in groundwater. It could also be clearly seen, by comparing historical data and the current data, that the methods used for sampling heavy metal can be applied to radioactivity. / South Africa
8

Biodegradation of methanol and tertiary butyl alcohol in previously uncontaminated subsurface systems

Goldsmith, Charles Douglas January 1985 (has links)
The objective of this study was to determine the potential for biodegradation in subsurface soils and groundwater from sites in Williamsport, PA, Wayland, NY, and Dumfries, VA. These subsurface systems were characterized both physically, chemically and biologically. Bacterial populations were substantial in all systems and ranged from 10³ to 10⁸ colony forming units per gram. Soil sampling was done in a quality-controlled aseptic manner using conventional drilling end sampling equipment. A matrix of test-tube microcosms was used to determine biodegradation rates of methanol and t-butyl alcohol at concentrations ranging from 1 to 1000 mg/L. Methanol degraded readily at all sites ranging from 0.8 mg/L/day to 20.4 mg/L/day and rates were generally greater in the saturated zone. TBA biodegraded at all sites, but was refractory in nature. Biodegradation rates for TBA in anaerobic subsurface systems were found to increase directly with initial concentration from 10⁻⁴ mg/L/day for 1 mg/L to 10⁻¹ mg/L/day for 80 mg/L. TBA biodegradation in the aerobic system was essentially constant over all concentrations. Biokinetic coefficients were determined for methanol and TBA at each site based on plots of utilization rates versus substrate concentration and reciprocal plots of these values. The K values found suggest that aerobic subsurface systems can utilize alcohols at a greater rate than anoxic subsurface systems and can be used for comparative purposes. The K<sub>s</sub> of anoxic subsurface systems were found to be large due to the low temperature (10°C) found in aquifers. The results indicate that methanol contamination in groundwater has much less associated risk to drinking water supplies due to the ease of biodegradation. However, TBA poses a much greater risk due to the very slow removal rates at low concentrations, which could result in a residual level for over a decade in some cases. / Ph. D.
9

Untersuchungen zum Vorkommen und Transportverhalten von Partikeln in Grundwässern und Abschätzung ihrer Relevanz für den Schadstofftransport / Examination of presence and transport characteristics of particles in groundwaters and estimation of their relevance to contaminant transport

Marre, Dirk 27 June 2004 (has links) (PDF)
Im Grundwasser mobile Feststoff-Partikel stehen im Verdacht, den Transport schwerlöslicher Schadstoffe zu begünstigen. Die Partikel-Konzentration im Wasser lässt sich aber nur mittels einer aufwändigen Probenahme bestimmen. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit Feld- und Laborversuche durchgeführt. In Feldversuchen zur Probenahme wurde festgestellt, dass für eine Stabilisierung der Partikel-Anzahl-Konzentration (CN in Partikel&amp;gt;Nachweisgrenze/L) die Dauer der Probenahme ausschlaggebend ist, nicht das insgesamt geförderte Volumen. Eine hohe Förderrate hat dabei nicht automatisch eine stärkere Mobilisierung von Partikeln aus dem Partikel-Depot im Umfeld der Messstelle zur Folge, wie es häufig postuliert wird. Die Gewinnung einer repräsentativen Partikelprobe macht eine Probenahme-Dauer von mindestens 5, häufig sogar über 10 oder 12 Stunden erforderlich. Empfehlungen zur Probenahme wurden erarbeitet. Es wurde aber festgestellt, dass sich stabilisierte Werte für CN als Funktion der Förderdauer (t in min) nach CN = a ? t^(-½) ungefähr abschätzen lassen, wenn der Parameter a über CN nach ca. 60 Minuten ermittelt wird. Bei Wässern mit Sauerstoff-Konzentrationen über ca. 1 mg/L kann überdies auch die Verteilung der Partikel auf einzelne Größenklassen bereits nach dieser Zeit ermittelt werden; bei sauerstoffärmeren Wässern verändert sie sich später noch. Angesichts einer starken Variation von CN einer Messstelle ist es generell aber nur möglich, eine Größenordnung für die Hintergrundkonzentration anzugeben. Von Messstelle zu Messstelle sind große Unterschiede bei CN festzustellen. Die Konzentration ist dabei nicht eindeutig abhängig von der Lithologie des Grundwasserleiters oder der Zusammensetzung des Grundwassers. Allerdings konnte eine schwache Korrelation mit dem Redox-Potential (Eh in mV) des Wassers gefunden werden (CN = 1,8?10^6?e^( 0,0087?Eh) [Partikel&amp;gt;2,58µm/L]; r² &amp;amp;#8776; 0,46). Hierüber besteht die Möglichkeit, CN eines Grundwassers auch ohne Partikelmessung abzuschätzen. Insgesamt bewegen sich die Partikel-Massen-Konzentrationen (C in mg/L) der beprobten Wässer meist im Bereich von &amp;lt;1 mg/L, öfters sogar &amp;lt;0,1 mg/L, wenn die im Verlaufe von Probenahme und Messung ausgefällten Fe- und Mn-Oxide nicht berücksichtigt werden. Solche Konzentrationen sind vermutlich kaum in der Lage, relevante Mengen selbst sehr hydrophober Schadstoffen aufzunehmen und zu transportieren. Versuche mit Phenanthren ergaben zudem, dass es anscheinend weniger an bereits in Suspension befindliche Partikel sorbiert, sondern vielmehr in sorbiertem oder kristallinen Zustand aus dem Depot erodiert wird. In Laborversuchen wurde weiter gezeigt, dass in natürlichen Sedimenten ein großes Depot mobilisierbarer Partikel vorhanden ist, das Partikel über einen sehr langen Zeitraum kontinuierlich abgeben kann. Durchbruchsversuche ergaben außerdem, dass ein Großteil zugegebener Partikel bei der Passage durch eine Sedimentprobe zurückgehalten und nur sehr allmählich wieder abgegeben wird. Allerdings war auch ein schneller (präferentieller) Durchbruch zu verzeichnen. In Modellrechnungen konnte gezeigt werden, dass sich ein solcher Partikeltransport weder über eine Filterfunktion noch über die Transportgleichung zufrieden stellend berechnen lässt. Daher ist es nötig, einerseits einen bevorzugten Transport und andererseits eine starke Retardation zu berücksichtigen. Letzteres kann am besten über verschiedene Retardationsfaktoren oder ein dynamisches Partikel-Depot mit Anlagerungs- und Ablösungskonstanten geschehen. / Solid particles that are mobile in groundwater are suspected to enhance the transport of hardly soluble contaminants. But particle concentrations in water can only be measured using time-consuming sampling-procedures. On this background field- and laboratory-experiments were conducted in this work. In field experiments on sampling it turned out, that sampling time is crucial for stabilizing particle number-concentration (CN in particles&amp;gt;detection limit/L), not the volume sampled. A high sampling rate does not -as often argued- automatically result into higher mobilization of particles from the particle-depot in the vicinity of the sampling-well. Obtaining a representative particle sample requires a sampling-time of at least 5, often even more than 10 or 12 hours. In this work recommendations on sampling are given. It was noticed that stabilized values of CN can be estimated as function of sampling time (t in min) by CN = A ? t^(-½), if parameter A is calculated using CN after about 60 minutes. In waters having oxygen-concentrations above approximately 1 mg/L even distribution of the particles into size classes can be estimated after this time; in oxygen-poor waters size-distributions stabilized much later. Because of strong variations of CN in a single measuring well it is generally only possible to give the magnitude of the background-particle-concentration. But among several measuring wells CN may differ by several magnitudes. The concentrations do neither definitely depend upon the lithology of the aquifer nor on the groundwater-composition. But a weak correlation to the redox-potential (Eh in mV) can be found (CN = 1.8 ? 10^6 ? e^( 0.0087 ? Eh) [particles&amp;gt;2.58µm/L]; r² &amp;amp;#8776; 0,46). Using this connection it is possible to estimate a magnitude of CN of a groundwater without even measuring particles. Over all particle mass-concentrations (C in mg/L) of all sampled groundwaters were almost always &amp;lt;1 mg/L, often even &amp;lt;0.1 mg/L, at least if iron- and manganese-oxides that precipitated during measurements were ignored. Such particle concentrations are probably hardly capable of adsorbing and carrying relevant amounts of contaminants, even very hydrophobic ones. Experiments using phenanthrene in contaminated sand additionally showed that it is probably hardly adsorbed onto already suspended particles, but mostly eroded from the particle depot in adsorbed or crystalline state. In laboratory experiments it was further shown that there is a huge depot of mobilizable particles in natural sediments that can continually release particles over a very long period of time. Break-through-experiments showed in addition that a large part of particles fed into the system are retained during the passage through a sediment sample and that they are re-released only very slowly. However, there also was a fast (preferential) break-through. In model calculations it could be shown that such a particle transport can neither be sufficiently described by the filter-function nor by the transport equation. Because of that it is necessary to take into consideration a preferential transport on the one hand and a strong retardation on the other. The last one can at the best be described by several retardation-factors or a dynamic particle-depot having constant attachment- and detachment rates.
10

Untersuchungen zum Vorkommen und Transportverhalten von Partikeln in Grundwässern und Abschätzung ihrer Relevanz für den Schadstofftransport

Marre, Dirk 18 September 2003 (has links)
Im Grundwasser mobile Feststoff-Partikel stehen im Verdacht, den Transport schwerlöslicher Schadstoffe zu begünstigen. Die Partikel-Konzentration im Wasser lässt sich aber nur mittels einer aufwändigen Probenahme bestimmen. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit Feld- und Laborversuche durchgeführt. In Feldversuchen zur Probenahme wurde festgestellt, dass für eine Stabilisierung der Partikel-Anzahl-Konzentration (CN in Partikel&amp;gt;Nachweisgrenze/L) die Dauer der Probenahme ausschlaggebend ist, nicht das insgesamt geförderte Volumen. Eine hohe Förderrate hat dabei nicht automatisch eine stärkere Mobilisierung von Partikeln aus dem Partikel-Depot im Umfeld der Messstelle zur Folge, wie es häufig postuliert wird. Die Gewinnung einer repräsentativen Partikelprobe macht eine Probenahme-Dauer von mindestens 5, häufig sogar über 10 oder 12 Stunden erforderlich. Empfehlungen zur Probenahme wurden erarbeitet. Es wurde aber festgestellt, dass sich stabilisierte Werte für CN als Funktion der Förderdauer (t in min) nach CN = a ? t^(-½) ungefähr abschätzen lassen, wenn der Parameter a über CN nach ca. 60 Minuten ermittelt wird. Bei Wässern mit Sauerstoff-Konzentrationen über ca. 1 mg/L kann überdies auch die Verteilung der Partikel auf einzelne Größenklassen bereits nach dieser Zeit ermittelt werden; bei sauerstoffärmeren Wässern verändert sie sich später noch. Angesichts einer starken Variation von CN einer Messstelle ist es generell aber nur möglich, eine Größenordnung für die Hintergrundkonzentration anzugeben. Von Messstelle zu Messstelle sind große Unterschiede bei CN festzustellen. Die Konzentration ist dabei nicht eindeutig abhängig von der Lithologie des Grundwasserleiters oder der Zusammensetzung des Grundwassers. Allerdings konnte eine schwache Korrelation mit dem Redox-Potential (Eh in mV) des Wassers gefunden werden (CN = 1,8?10^6?e^( 0,0087?Eh) [Partikel&amp;gt;2,58µm/L]; r² &amp;amp;#8776; 0,46). Hierüber besteht die Möglichkeit, CN eines Grundwassers auch ohne Partikelmessung abzuschätzen. Insgesamt bewegen sich die Partikel-Massen-Konzentrationen (C in mg/L) der beprobten Wässer meist im Bereich von &amp;lt;1 mg/L, öfters sogar &amp;lt;0,1 mg/L, wenn die im Verlaufe von Probenahme und Messung ausgefällten Fe- und Mn-Oxide nicht berücksichtigt werden. Solche Konzentrationen sind vermutlich kaum in der Lage, relevante Mengen selbst sehr hydrophober Schadstoffen aufzunehmen und zu transportieren. Versuche mit Phenanthren ergaben zudem, dass es anscheinend weniger an bereits in Suspension befindliche Partikel sorbiert, sondern vielmehr in sorbiertem oder kristallinen Zustand aus dem Depot erodiert wird. In Laborversuchen wurde weiter gezeigt, dass in natürlichen Sedimenten ein großes Depot mobilisierbarer Partikel vorhanden ist, das Partikel über einen sehr langen Zeitraum kontinuierlich abgeben kann. Durchbruchsversuche ergaben außerdem, dass ein Großteil zugegebener Partikel bei der Passage durch eine Sedimentprobe zurückgehalten und nur sehr allmählich wieder abgegeben wird. Allerdings war auch ein schneller (präferentieller) Durchbruch zu verzeichnen. In Modellrechnungen konnte gezeigt werden, dass sich ein solcher Partikeltransport weder über eine Filterfunktion noch über die Transportgleichung zufrieden stellend berechnen lässt. Daher ist es nötig, einerseits einen bevorzugten Transport und andererseits eine starke Retardation zu berücksichtigen. Letzteres kann am besten über verschiedene Retardationsfaktoren oder ein dynamisches Partikel-Depot mit Anlagerungs- und Ablösungskonstanten geschehen. / Solid particles that are mobile in groundwater are suspected to enhance the transport of hardly soluble contaminants. But particle concentrations in water can only be measured using time-consuming sampling-procedures. On this background field- and laboratory-experiments were conducted in this work. In field experiments on sampling it turned out, that sampling time is crucial for stabilizing particle number-concentration (CN in particles&amp;gt;detection limit/L), not the volume sampled. A high sampling rate does not -as often argued- automatically result into higher mobilization of particles from the particle-depot in the vicinity of the sampling-well. Obtaining a representative particle sample requires a sampling-time of at least 5, often even more than 10 or 12 hours. In this work recommendations on sampling are given. It was noticed that stabilized values of CN can be estimated as function of sampling time (t in min) by CN = A ? t^(-½), if parameter A is calculated using CN after about 60 minutes. In waters having oxygen-concentrations above approximately 1 mg/L even distribution of the particles into size classes can be estimated after this time; in oxygen-poor waters size-distributions stabilized much later. Because of strong variations of CN in a single measuring well it is generally only possible to give the magnitude of the background-particle-concentration. But among several measuring wells CN may differ by several magnitudes. The concentrations do neither definitely depend upon the lithology of the aquifer nor on the groundwater-composition. But a weak correlation to the redox-potential (Eh in mV) can be found (CN = 1.8 ? 10^6 ? e^( 0.0087 ? Eh) [particles&amp;gt;2.58µm/L]; r² &amp;amp;#8776; 0,46). Using this connection it is possible to estimate a magnitude of CN of a groundwater without even measuring particles. Over all particle mass-concentrations (C in mg/L) of all sampled groundwaters were almost always &amp;lt;1 mg/L, often even &amp;lt;0.1 mg/L, at least if iron- and manganese-oxides that precipitated during measurements were ignored. Such particle concentrations are probably hardly capable of adsorbing and carrying relevant amounts of contaminants, even very hydrophobic ones. Experiments using phenanthrene in contaminated sand additionally showed that it is probably hardly adsorbed onto already suspended particles, but mostly eroded from the particle depot in adsorbed or crystalline state. In laboratory experiments it was further shown that there is a huge depot of mobilizable particles in natural sediments that can continually release particles over a very long period of time. Break-through-experiments showed in addition that a large part of particles fed into the system are retained during the passage through a sediment sample and that they are re-released only very slowly. However, there also was a fast (preferential) break-through. In model calculations it could be shown that such a particle transport can neither be sufficiently described by the filter-function nor by the transport equation. Because of that it is necessary to take into consideration a preferential transport on the one hand and a strong retardation on the other. The last one can at the best be described by several retardation-factors or a dynamic particle-depot having constant attachment- and detachment rates.

Page generated in 0.1095 seconds