• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conformal Invariance and Liouville Field Theory / Invariância Conforme e Teoria de Campo de Liouville

Díaz, Laura Raquel Rado 01 June 2015 (has links)
In this work, we make a brief review of the Conformal Field Theory in two dimensions,in order to understand some basic definitions in the study of the Liouville Field Theory, which has many application in theoretical physics like string theory, general relativity and supersymmetric gauge field theories. In particular, we focus on the analytic continuation of the Liouville Field Theory, context in which an interesting relation with the Chern-Simons Theory arises as an extension of its well-known relation with the Wess-Zumino-Witten model. Thus, calculating correlation functions by using the complex solutions of the Liouville Theory will be crucial aim in this work in order to test the consistency of this analytic continuation. We will consider as an application the time-like version of the Liouville Theory, which has several applications in holographic quantum cosmology and in studying tachyon condensates. Finally, we calculate the three-point function for the Wess-Zumino-Witten model for the standard Kac-Moody level k > 2 and the particular case 0 < k < 2, the latter has an interpretation in time-dependent scenarios for string theory. Here we will find an analogue relation we find by comparing the correlation function of the time-like and space-like Liouville Field Theory. / Neste trabalho, nós fazemos uma breve revisão da Teoria de Campo Conforme em duas dimensões, a fim de entender algumas denições básicas do estudo da Teoria de Campo de Liouville, que tem muitas aplicações em física teórica como a teoria das cordas, a relatividade geral e teorias de campo de calibre supersimétricas. Em particular, vamos nos concentrar sobre a continuação analítica da Teoria de Campo de Liouville, contexto no qual uma interessante relação com a Teoria de Chern-Simons surge como uma extensão de sua relação conhecida com o modelo de Wess-Zumino-Witten. Assim, o cálculo das funções de correlação usando as soluções complexas da Teoria Liouville será o objectivo fundamental neste trabalho, a fim de testar a consistência da continuação analítica. Vamos considerar como uma aplicação a versão time-like da Teoria de Liouville, que tem várias aplicações em cosmologia quântica holográfica e no estudo de condensados de tachyon. Finalmente, calculamos a função de três pontos para o modelo de Wess-Zumino-Witten no nível de Kac-Moody k > 2 e o caso particular 0 < k < 2, este último tem uma interpretação em cenários dependentes do tempo para a teoria das cordas. Aqui nós vamos encontrar uma relação análoga ao que temos para a função de correlação do space-like e time-like na Teoria de Campo de Liouville.
2

Conformal Invariance and Liouville Field Theory / Invariância Conforme e Teoria de Campo de Liouville

Laura Raquel Rado Díaz 01 June 2015 (has links)
In this work, we make a brief review of the Conformal Field Theory in two dimensions,in order to understand some basic definitions in the study of the Liouville Field Theory, which has many application in theoretical physics like string theory, general relativity and supersymmetric gauge field theories. In particular, we focus on the analytic continuation of the Liouville Field Theory, context in which an interesting relation with the Chern-Simons Theory arises as an extension of its well-known relation with the Wess-Zumino-Witten model. Thus, calculating correlation functions by using the complex solutions of the Liouville Theory will be crucial aim in this work in order to test the consistency of this analytic continuation. We will consider as an application the time-like version of the Liouville Theory, which has several applications in holographic quantum cosmology and in studying tachyon condensates. Finally, we calculate the three-point function for the Wess-Zumino-Witten model for the standard Kac-Moody level k > 2 and the particular case 0 < k < 2, the latter has an interpretation in time-dependent scenarios for string theory. Here we will find an analogue relation we find by comparing the correlation function of the time-like and space-like Liouville Field Theory. / Neste trabalho, nós fazemos uma breve revisão da Teoria de Campo Conforme em duas dimensões, a fim de entender algumas denições básicas do estudo da Teoria de Campo de Liouville, que tem muitas aplicações em física teórica como a teoria das cordas, a relatividade geral e teorias de campo de calibre supersimétricas. Em particular, vamos nos concentrar sobre a continuação analítica da Teoria de Campo de Liouville, contexto no qual uma interessante relação com a Teoria de Chern-Simons surge como uma extensão de sua relação conhecida com o modelo de Wess-Zumino-Witten. Assim, o cálculo das funções de correlação usando as soluções complexas da Teoria Liouville será o objectivo fundamental neste trabalho, a fim de testar a consistência da continuação analítica. Vamos considerar como uma aplicação a versão time-like da Teoria de Liouville, que tem várias aplicações em cosmologia quântica holográfica e no estudo de condensados de tachyon. Finalmente, calculamos a função de três pontos para o modelo de Wess-Zumino-Witten no nível de Kac-Moody k > 2 e o caso particular 0 < k < 2, este último tem uma interpretação em cenários dependentes do tempo para a teoria das cordas. Aqui nós vamos encontrar uma relação análoga ao que temos para a função de correlação do space-like e time-like na Teoria de Campo de Liouville.
3

A Primer to Categorical Symmetries and Their Application to QCD in Two Dimensions

Olofsson, Rikard January 2021 (has links)
We introduce the formalism of categorical symmetries, and examine how these appear in quantum field theories. We discuss rational conformal field theories and their Verlinde lines, with the critical Ising model as an example. We introduce Wess Zumino Witten models and affine Lie algebras. An algorithm for the fusion rules is presented. We use bosonization to realise two dimensional adjoint SU(N) QCD as a WZW coset model plus a kinetic term for the gauge field. We argue that the infrared theory has degenerate vacua acted upon by a non-negative integer valued matrix representation of a categorical symmetry. We compute generators for these matrices for gauge groups SU(3) and SU(4).
4

Hermitian-Yang-Mills Metrics on Hilbert Bundles and in the Space of Kahler Potentials

Kuang-Ru Wu (9132815) 05 August 2020 (has links)
<div>The two main results in this thesis have a common point: Hermitian--Yang--Mills (HYM) metrics. In the first result, we address a Dirichlet problem for the HYM equations in bundles of infinite rank over Riemann surfaces. The solvability has been known since the work of Donaldson \cite{Donaldson92} and Coifman--Semmes \cite{CoifmanSemmes93}, but only for bundles of finite rank. So the novelty of our first result is to show how to deal with infinite rank bundles. The key is an a priori estimate obtained from special feature of the HYM equation.</div><div> </div><div> In the second result, we take on the topic of the so-called ``geometric quantization." This is a vast subject. In one of its instances the aim is to approximate the space of K\"ahler potentials by a sequence of finite dimensional spaces. The approximation of a point or a geodesic in the space of K\"ahler potentials is well-known, and it has many applications in K\"ahler geometry. Our second result concerns the approximation of a Wess--Zumino--Witten type equation in the space of K\"ahler potentials via HYM equations, and it is an extension of the point/geodesic approximation. </div><div> </div>
5

Quantum gravity in two- and three-dimensional dS spaces

Chernichenko, Alexsey January 2024 (has links)
This thesis is a study of certain aspects of quantum gravity in two- and three-dimensional de Sitter spaces. The model used in dS2 is the Jackiw- Tetitelboim gravity which involves a scalar coupling. At low-energy limit this model becomes Schwarzian theory for which one can compute one-loop partition function. Along the way, the model is recasted into the first order formalism which helps to find an appropriate measure for the partition function. The layout for quantum gravity in dS3 is practically the same and many results appear to be quite similar. Although, there are as many dissimilarities. Ultimately, the goal is different, namely to determine one-loop correction to the central charge of the theory dual to dS3 . Additionally, a putative genus expansion for Jackiw-Teitelboim gravity is investigated along with some concrete computations being done. / Detta examensarbete ̈ar en studie av vissa aspekter av kvantgravita-tion i två och tredimensionella de Sitter-rummen. Den behandlar Jackiw-Teitelboim gravitation i dS2 , en model med en skalär koppling. Vid lågenergigränns blir modellen till Schwarzian teorin som används för att beräkna första ordningskorrektionen till partitionsfunktion. På vägen dit skrivs om modelen till första ordningens formalism som sedan hjälper att hitta ett lämpligt mått för partitionsfunktionen. Plannen för dS3 ser ut i princip likadant och en stor del av resultater är liknande. Emellertid finns det lika många olikheter. I slut änden, målet är annorludna, nämligen att beräkna första ordningens korrektion till centrala laddningen av teorin som dual till dS3 . Dessutom, en förmodad genus expansion för Jackiw-Teitelboim gravitation är undersökt och vissa konkreta beräkningar är gjorda.

Page generated in 0.061 seconds