Spelling suggestions: "subject:"dde bitter space"" "subject:"dde critter space""
1 |
Um estudo das hipersuperfícies maximais tipo espaço no espaço anti-de Sitter / A study of spacelike maximal hypersurfaces in the anti-de Sitter spaceMascaro, Bruno 07 June 2017 (has links)
Este trabalho apresenta a demonstração de dois teoremas sobre a caracterização de hipersuperf ícies maximais no espaço anti-de Sitter. Ambos os Teoremas 4.0.1 e 4.0.2 caracterizam hipersuperf ícies maximais isométricamente imersas no espaço anti-de Sitter Hn+1 1 com (n-1) curvaturas principais de mesmo sinal, com curvatura escalar constante e curvatura de Gauss-Kronecker constante não-nula, respectivamente, como sendo isométricas ao cilindro hiperbólico H1(c1)Hn1(c2). Também é feito um breve estudo do artigo [17], onde o Teorema 3.0.3 é ferramenta chave para a obtenção dos resultados demonstrados nos Teoremas 4.0.1 e 4.0.2. / This work presents, the demonstration of two theorems about the characterization of maximal hypersurfaces on the anti-de Sitter space. Both Theorems 4.0.1 and 4.0.2 characterize maximal hypersurfaces isometrically immersed in the anti-de Sitter space Hn+1 1 with (n-1) principal curvatures with the same sign, with constant scalar curvature and nonzero constant Gauss-Kronecker curvature, respectively, as being isometric to the hyperbolic cylinder H1(c1) Hn1(c2). Is also done a brief study of the article [17], where the Theorem 3.0.3 is key piece to obtain the results demonstrated in Theorems 4.0.1 and 4.0.2.
|
2 |
Explorations of University Physics in Abstract Contexts : From de Sitter Space to Learning SpaceDomert, Daniel January 2006 (has links)
This is a thesis which contributes to research in two different fields: theoretical physics and physics education research. The common link between these two research areas is that both involve explorations of abstract physics and mathematical representations, but from different perspectives. The first part of this thesis is situated in theoretical physics. Here a cosmological scenario is explored where a de Sitter phase is replaced with a phase described with a scale factor a(t) ~ tq, where 1/3<1. This scenario could be viewed as an inflationary toy model, and is shown to open up the possibility of an information paradox. This potential paradox is resolved even in the worst case scenario by showing that the time scales involved for such a paradox to occur is of the order of magnitude of the recurrence time for the de Sitter space. The second part of this thesis is situated in physics education research. A number of learning situations that are experienced as abstract by students are explored: probability in one dimensional quantum tunnelling; the mindsets that students adopt towards understanding physics equations used in typical teaching scenarios; and what students focus on when presented with physics equations. The results for the quantum scattering study are four phenomenographic categories of description, for the mind sets study, six epistemological components of mindsets and for the focus on physics equations study, three foci creating five levels of increasing complexity of ways of experiencing physics equations. Pedagogical implications of these results are discussed.
|
3 |
Rigidity and unstability of hypersurfaces and an unicity theorem on semi-Rieamannian manifolds. / Instabilidade e rigidez de hipersuperfÃcies e um teorema de unicidade em variedades semi-riemannianasKelton Silva Bezerra 06 December 2013 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Our aim in this work is threefold. First, we get an extension, to the spherical case, of a theorem due to J. Simons, which concerns unstability of minimal cones constructed over a certain class of minimal submanifolds of the Euclidean sphere. Second, we classify the quasi-Einstein structures of the Riemannian product Hn x R. Third, we get a rigidity theorem for complete hypersurfaces into the De Sitter space, under certain conditions on the mean and scalar curvatures. / Este trabalho aborda trÃs problemas em Geometria Diferencial. Primeiro, obtemos uma extensÃo, para o caso esfÃrico, de um teorema devido a J. Simons sobre instabilidade de cones mÃnimos construÃdos sobre uma certa classe de subvariedades mÃnimas da esfera Euclidiana. Depois, classificamos as estruturas quasi-Einstein existentes sobre o produto Riemanniano Hn X R. Por fim, obtemos um teorema de rigidez para hipersuperfÃcies tipo-espaÃo completas do espaÃo de De Sitter, sob certas condiÃÃes sobre as curvaturas mÃdia e escalar, alÃm de uma condiÃÃo de integrabilidade.
|
4 |
Um estudo das hipersuperfícies maximais tipo espaço no espaço anti-de Sitter / A study of spacelike maximal hypersurfaces in the anti-de Sitter spaceBruno Mascaro 07 June 2017 (has links)
Este trabalho apresenta a demonstração de dois teoremas sobre a caracterização de hipersuperf ícies maximais no espaço anti-de Sitter. Ambos os Teoremas 4.0.1 e 4.0.2 caracterizam hipersuperf ícies maximais isométricamente imersas no espaço anti-de Sitter Hn+1 1 com (n-1) curvaturas principais de mesmo sinal, com curvatura escalar constante e curvatura de Gauss-Kronecker constante não-nula, respectivamente, como sendo isométricas ao cilindro hiperbólico H1(c1)Hn1(c2). Também é feito um breve estudo do artigo [17], onde o Teorema 3.0.3 é ferramenta chave para a obtenção dos resultados demonstrados nos Teoremas 4.0.1 e 4.0.2. / This work presents, the demonstration of two theorems about the characterization of maximal hypersurfaces on the anti-de Sitter space. Both Theorems 4.0.1 and 4.0.2 characterize maximal hypersurfaces isometrically immersed in the anti-de Sitter space Hn+1 1 with (n-1) principal curvatures with the same sign, with constant scalar curvature and nonzero constant Gauss-Kronecker curvature, respectively, as being isometric to the hyperbolic cylinder H1(c1) Hn1(c2). Is also done a brief study of the article [17], where the Theorem 3.0.3 is key piece to obtain the results demonstrated in Theorems 4.0.1 and 4.0.2.
|
5 |
The nonperturbative renormalization group for quantum field theory in de De Sitter space / Le groupe de renormalisation non perturbatif pour la théorie quantique des champs en espace-temps de De SitterGuilleux, Maxime 28 September 2016 (has links)
La cosmologie moderne amène à étudier la théorie quantique des champs en espace-temps courbe. Les champs scalaires légers, notamment, génèrent un mécanisme simple pour l'inflation et les fluctuations primordiales. Cependant, les calculs de boucles de ces modèles contiennent des divergences infrarouges et séculaires qui requièrent des techniques de resommation. Dans ce but, on implémente le groupe de renormalisation non perturbatif pour des champs scalaires en espace-temps de De Sitter. Dans un premier temps, on applique l'Approximation de Potentiel Local (APL). On démontre que les effets infrarouges sont responsables d'une restauration de la symétrie, et qu'une masse est générée en accord avec l'approche stochastique. On étudie ensuite la limite d'espace-temps plat de notre formalisme en prenant la courbure $H\to 0$, ce qui reproduit un certain nombre de résultats connus. Enfin, on s'intéresse à l'expansion dérivative, qui va au-delà de l'APL. Son implémentation semble trop complexe dans le cas général d'un espace-temps courbe, mais les symétries de De Sitter permettent de trouver une représentation simple. On définit une prescription pour tous les ordres de l'expansion, puis on implémente le flot du terme de premier ordre dans le cas simple où la dépendance en champ est négligée / The nonperturbative renormalization group for quantum field theory in de Sitter space.The study of cosmology draws us to the topic of quantum fields in curved space-time. In particular, light scalar fields offer a simple mechanism for inflation and primordial fluctuations. When computing loop corrections to these models however, infrared and secular divergences appear which call for resummation techniques. To this end, we implement the nonperturbative renormalization group for quantum scalar fields on a fixed de Sitter background. First, the Local Potential Approximation (LPA) is applied. We show that there is always symmetry restoration due to infrared effects, and that mass is generated in agreement with the stochastic approach. Next, we study the flat space limit of our formalism by taking the curvature $H\to0$, and we check that it reproduces a number of known results. Finally, we discuss the derivative expansion, which goes beyond the LPA. Its implementation seems too complex in general curved space-times, but de Sitter symmetries allow for a simpler representation. We define a prescription for all orders of the expansion, and discuss the flow of the first order term in the simple case where we neglect the field dependency (LPA')
|
6 |
CaracterizaÃÃo de hipersuperfÃcies tipo espaÃo com curvatura mÃdia constante e duas curvaturas principais no espaÃo anti de Sitter / Caracterization of spacelike hypersurfaces with constant mean curvature and two principal curvatures in anti de Sitter spaceWanderley de Oliveira Pereira 31 July 2013 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Este trabalho tem como objetivo fornecer uma caracterizaÃÃo de hipersuperfÃcies tipo espaÃo completas no espaÃo anti de Sitter, tais como os cilindros hiperbÃlicos, sob a hipÃtese de curvatura mÃdia constante e duas curvaturas principais distintas. No caso em que umas das curvaturas principais à simples, à adicionada uma condiÃÃo sobre tais curvaturas. A caracterizaÃÃo aqui sugerida, teve como refrÃncia principal o trabalho de B. Yang e X. Liu, que dà uma resposta positiva à conjectura de L. F. Cao e G. Wei sobre hipersuperfÃcies tipo espaÃo em tais condiÃÃes. Para a realizaÃÃo do trabalho, foi utilizada uma fÃrmula do tipo Simons juntamente com o PrincÃpio do MÃximo Generalizado (Omori-Yau). / The aim of this work is to provide a characterization complete spacelike hypersurfaces in anti de Sitter space, such as hyperbolic cylinders, under the assumption constant mean curvature and two distinct principal curvatures. In the case that one of the principal curvatures is simple, a condition is added on the curvature. The characterization suggested here had as main reference the work of B.Yang and X. Liu, giving a positive answer to the L. F. Cao and G. Weiâs conjecture on spacelike hypersurfaces in such conditions. To carry out the work, we used a formula of type Simons along with the Generalized Maximum Principle (Omori-Yau).
|
7 |
Um teorema de rigidez para hipersuperfÃcies cmc completas em variedades de Lorentz / A rigidity theorem for complete hypersurfaces in Lorentz manifoldsKelton Silva Bezerra 10 March 2009 (has links)
O objetivo deste trabalho à apresentar um teorema de classificaÃÃo para hipersuperfÃcies completas e de curvatura mÃdia constante em variedades de Lorentz de curvatura seccional constante, sob certas limitaÃÃes da curvatura escalar. Para isto usaremos a fÃrmula de Simons, que nos dà uma relaÃÃo entre as transformaÃÃes de Newton Pr e o laplaciano da norma ao quadrado do operador de Weingarten Ã, e um princÃpio do mÃximo devido H. Omori e S. T. Yau. Como primeira aplicaÃÃo obtemos uma classificaÃÃo das hipersuperfÃcies tipo-espaÃo completas e de curvatura mÃdia constante no espaÃo de De Sitter, com curvatura escalar R maior ou igual a 1. ConcluÃmos tambÃm que toda hipersuperfÃcie tipo-espaÃo completa e de curvatura mÃdia constante positiva do espaÃo de Lorentz-Minkowski, com curvatura escalar nÃo-negativa, à um cilindro sobre uma curva plana e, a menos de isometrias, determinamos tal curva. / Our aim in this work is to show a classification theorem for complete CMC hipersurfaces in Lorentz manifolds of constant sectional curvature, under certains bounds on the scalar curvature. To this end we use Simons formula, wich gives a relation between Newton transformations and the Laplacian of the squared norm of the Weingarten operator A, as well as a maximum principle due to H. Omori and S. T. Yau. We obtain, as a first application, a classification of complete spacelike CMC hypersurfaces of the De Sitter space, having scalar curvature R maior ou igual a 1. We also conclude that all complete spacelike hypersurfaces with positive constant mean curvature and nonegative scalar curvature in the Lorentz-Minkowski space are cylinders over a plane curve and, up to isometries, we determine this curve.
|
8 |
The 2+1 Lorentz Group and Its RepresentationsSjöstedt, Klas January 2020 (has links)
The Lorentz group is a symmetry group on Minkowski space, and as such is central to studying the geometry of this and related spaces. The group therefore shows up also from physical considerations, such as trying to formulate quantum physics in anti-de Sitter space. In this thesis, the Lorentz group in 2+1 dimensions and its representations are investigated, and comparisons are made to the analogous rotation group. Firstly, all unitary irreducible representations are found and classified. Then, those representations are realised as the square-integrable, analytic functions on the unit circle and the unit disk, which turn out to correspond to the projective lightcone and the hyperbolic plane, respectively. Also, a way to realise a particular class of representations on 1+1-dimensional anti-de Sitter space is shown. / Lorentzgruppen är en symmetrigrupp på Minkowski-rum, och är således central för att studera geometrin i detta och relaterade rum. Gruppen dyker också därför upp från fysikaliska frågeställningar, såsom att försöka formulera kvantfysik i anti-de Sitter-rum. Denna uppsats undersöker Lorentzgruppen i 2+1 dimensioner och dess representationer, och jämför med den analoga rotationsgruppen. Först konstrueras och klassificeras alla unitära irreducibla representationer. Sedan realiseras dessa representationer som de analytiska funktioner på enhetscirkeln och enhetsskivan vars belopp i kvadrat är integrerbara. Det visar sig att denna cirkel respektive skiva svarar mot den projektiva ljuskonen respektive det hyperboliska planet. Dessutom visas att en särskild klass av representationer blir relevanta för att formulera kvantfysik i 1+1-dimensionellt anti-de Sitter-rum.
|
9 |
Studies on boundary values of eigenfunctions on spaces of constant negative curvatureBäcklund, Pierre January 2008 (has links)
<p>This thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries.</p><p>The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions.</p><p>The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.</p>
|
10 |
String Theory at the Horizon : Quantum Aspects of Black Holes and CosmologyOlsson, Martin January 2005 (has links)
<p>String theory is a unified framework for general relativity and quantum mechanics, thus being a theory of quantum gravity. In this thesis we discuss various aspects of quantum gravity for particular systems, having in common the existence of horizons. The main motivation is that one major challenge in theoretical physics today is in trying to understanding how time dependent backgrounds, with its resulting horizons and space-like singularities, should be described in a controlled way. One such system of particular importance is our own universe.</p><p>We begin by discussing the information puzzle in de Sitter space and consequences thereof. A typical time-scale is encountered, which we interpreted as setting the thermalization time for the system. Then the question of closed time-like curves is discussed in the combined setting where we have a rotating black hole in a Gödel-like universe. This gives a unified picture of what previously was considered as independent systems. The last three projects concerns $c=1$ matrix models and their applications. First in relation to the RR-charged two dimensional type 0A black hole. We calculate the ground state energy on both sides of the duality and find a perfect agreement. Finally, we relate the 0A model at self-dual radius to the topological string on the conifold. We find that an intriguing factorization of the theory previously observed for the topological string is also present in the 0A matrix model.</p>
|
Page generated in 0.0497 seconds