Spelling suggestions: "subject:"diestern rock lobster."" "subject:"8western rock lobster.""
1 |
The condition at settlement of the western rock lobster, Panulirus cygnus George : spatial and temporal fluctuationsLimbourn, Andrew John January 2010 (has links)
The condition at settlement of the western rock lobster pueruli presumably reflects both their energetic condition in reaching the near shore and subsequent recruitment into adult populations. In recruiting to the near shore the pueruli swim across the continental shelf where oceanographic conditions are complex and likely influence the success of recruitment. The results from the biochemical studies are interpreted in light of the oceanography off the coast of Western Australia. I investigated the nutritional condition of larval phyllosomata, post-larval puerulus and first instar post-pueruli juveniles of the spiny lobster, Panulirus cygnus, to determine energy use during the non-feeding transitional puerulus stage. Biochemical analyses of lipid, fatty acid (FA) and protein revealed that lipid, in particular phospholipids, is primarily used for energy during the nonfeeding puerulus stage. Monounsaturated FA showed the greatest decline with development, whereas the polyunsaturated FA showed a high degree of sparing, suggesting these FA are not used as a substrate for energy production. The knowledge gained on the biochemistry of energy use in P. cygnus was then used to investigate the spatial and temporal variability in the nutritional condition, in particular lipid condition, of puerulus collected at three near shore locations (Alkimos, Jurien Bay and Dongara) along the Western Australia coast, and one offshore location (Houtman Abrolhos Islands). The one offshore location was chosen as I hypothesised that arriving pueruli are likely to be in a better state of nutrition than those arriving at more coastal locations where the potential journey from offshore larval feeding grounds to the near shore is considerably greater. This element of my research showed lipid levels to be inversely related, generally, to shelf width but were variable, suggesting pueruli may travel complex trajectories to reach nearshore settlement. The lipid and FA composition of pueruli was also consistent with spatial and seasonal variation in Leeuwin Current and coastal productivity regimes.
|
2 |
An investigation of the physiological and biochemical responses elicited by Panulirus cygnus to harvesting, holding and live transport.Spanoghe, Patrick T. January 1996 (has links)
The western rock lobster (WRL), Panulirus cygnus is a decapod crustacean which is found in abundance in the coastal waters of Western Australia and which supports a major fishery of economic importance for the State, with an annual harvest ranging between 10-12 million kilograms. The growth of the existing markets in Asia for live exports and the competition exerted by other countries marketing spiny lobsters prompted the need for the Industry to assess and develop post-harvest handling procedures likely to contribute to an improved quality of live product. The physiological responses of P. cygnus to handling and transportation were virtually unexplored.The objectives of this project were, (i) to generate information with regard to the biological phenomena underlying morbidity and mortality of lobsters during live export shipments, (ii) to investigate the physiological responses of P. cygnus to the post-harvest handling practices currently used by the WRL industry in their five export program and, (iii) to identify protocols by which post-harvest handling techniques could be modified to reduce the occurrence of morbidity and mortality during five export.These objectives were achieved through, (i) a field survey conducted during the course of the 1992/93 fishing season, investigating the relative influence of environmental factors and processing techniques on the incidence of lobster morbidity+mortality during simulated live shipments and, (ii) a series of field experiments that monitored the physiological responses elicited by lobsters to post-harvest handling procedures and simulated live shipment conditions.From the field survey, it appeared that the rate of morbidity+mortality experienced in simulated live shipments, within the three processing units surveyed, averaged 5.22 +/- 0.63 %, with a highly significant difference (p [less than] 0.001) between the ++ / processing units. Scrutiny of the data revealed a major influence of two factors directly related to post-harvest handling procedures: a) the time spent under normal commercial conditions in packaging export cartons and, b) the ambient temperature within the export cartons. Following 30-36 hrs in packaging, the percent mortality increased twofold, from 5.2 +/- 0.0 % recorded following 20 - 24 hrs to 10.4 +/- 2.3%. With regard to the ambient temperature within the export carton, temperatures between 17.5 and 20.0 degrees celsius appear to be optimal for P. cygnus survival while temperatures above 20.0 degrees celsius induce significantly greater morbidity and mortality.A number of factors were identified as having a potential influence on lobster physiological responses to post-harvest handling conditions:a)Immediately after harvesting, lobsters are subjected to a range of transport environment options, according to their origins: i.e., (i) direct delivery from fishing vessels by local fishermen to the processing facility, (ii) onshore transportation by truck from coastal depots and, (iii) transport in baskets on board carrier-boats from the Houtman Abrolhos Islands.b) After delivery, lobsters are subjected to sorting and grading procedures, with a concomitant exposure to air and disturbance.c) Recovery in holding tanks is usually allowed for a period ranging between 24 to 72 hours.d) Prior to being packed in export cartons, lobsters are subjected to a short period (30 sec to 3 min) of immersion in chilled water (8 - 12 degrees celsius), the procedure varying from one processor to the other.e) During subsequent periods of transit in export cartons, (up to 48 hrs) lobsters are subjected to aerial exposure and fluctuating ambient temperature.A comparison of the physiological profiles of lobsters from different origins revealed significant differences, with respect to a ++ / range of physiological variables. On the basis of visual estimates of health status, lobsters from the "local" origin exhibited a consistently superior condition, when compared to "coastal" and "carrier-boat" animals. The examination of physiological variables revealed consistent trends reflecting the visual assessments. "Local" lobsters exhibited significantly lower levels in anaerobic metabolic waste concentrations, with the haemolymph lactate titre between 2.77 +/- 0.19 and 4.33 +/- 0.56 mmol L(subscript)-1, compared with the other groups, between 5.23 +/- 0.24 and 8.86 +/- 1.29 mmol L(subscript)-1. A 250 to 300% increase in haemolymph ammonia concentration was observed between "coastal" and "carrier-boat" groups and the "local" lobsters, at 0.32 +/- 0.02 mmol L(subscript)-1. Significantly higher pH values were recorded for the "local" group, at 7.72 +/- 0.04, compared with values below 7.64 +/- 0.04 for the other groups. "Local" lobsters recorded 8 to 15 times less circulating glucose, at 0.11 +/- 0.03 mmol L(subscript)-1, having 50% more ATP in their muscle tissues, at 6.07 +/- 0.15 mu mol g(subscript)-1 and 250% more arginine phosphate, at 6.56 +/- 0.72 mu mol g(subscript)-1.An assessment of the efficiency of the industry sorting procedures revealed differences between selected and rejected animals with regard to the ATP and arginine phosphate concentrations in their muscle tissues with, as a common trend for both variables, selected animals recorded higher values. Significant differences were identified within the "local" group of lobsters, with selected animals recording 40% more ATP, at 6.92 +/- 0.63 mu mol g(subscript)-1 and 30 % more arginine phosphate, at 7.77 +/- 1.01 mu mol g(subscript)-1.A monitoring of the physiological profiles of lobsters subjected to extended (up to 8 hours) periods of onshore transportation in trucks revealed a significant ++ / reduction in their health status. A consistent and almost linear fall in the concentration of total adenylate (35%), to 5.46 +/- 0.50 mu mol g(subscript)-1 and phosphagen reserve (70%),to 2.77 +/- 0.26 mu mol g(subscript)-1, were recorded throughout the 8 hour period. For up to 6 hours the concentration of lactate in the leg muscle tissues increased by 0.95 mu mol g(subscript)-1 h(subscript)-1 and then by 4.7 mu mol g(subscript)-1 h(subscript)-1,to reach 20.57 +/- 1.61 mu mol g(subscript)-1 after 8 hours. Haemolymph glucose and ammonia titres recorded a 3.5 fold increase over the first 6 hours, to reach 2.14 +/- 0.54 and 1.17 +/- 0.16 mmol L(subscript)-1, respectively, the last period (6 to 8 hours) being characterised by a 1.6 and 1.9 fold decrease in concentration. Lobsters were able to maintain their haemolymph pH close to 7.77 during the first four hours, with a concomitant rise in haemolymph calcium concentration. From the results, it appeared that, under current industry procedures, extending the period during which lobsters are transported in spray trucks to more than 6 hours is conducive of altered physiological status.An assessment of the effects of short periods (up to 60 min) of aerial exposure and disturbance revealed significant changes in the physiological profiles of lobsters. When exposed to air, lobsters exhibited a significant fall in haemolymph pH, a rise in lactate concentration, and a depletion in energy reserves. Lobsters left undisturbed were able to buffer an incipient acidosis for up to 40 min (7.78 +/- 0.03), after which a decline in pH was recorded to reach 7.71 +/- 0.02. Conversely, disturbed animals experienced an uncompensated acidosis and a decrease by 0.7 of a unit over a 60 minute period. Similarly, undisturbed lobsters did not demonstrate behavioural signs of stress while disturbed animals exhibited dramatically diminished responses ++ / to handling after 60 min of exposure. Both disturbed and undisturbed animals recorded a decline in ATP/ADP, to reach after 40 min, 8.31 +/- 0.77 and 5.05 +/- 0.45, respectively, compared to 13.18 +/- 1.69 (control). During the last period (40 to 60 min), the undisturbed animals recorded a 40 % decrease in ATP concentration, to reach 4.42 +/- 0.16 mu mol g(subscript)-1, while a 53% decline was recorded in the disturbed group, to 3.59 +/- 0.41 mu mol g(subscript)-1. During aerial exposure, the phosphagen reserve recorded a 55% decrease in the disturbed animals, at 4.82 +/- 1.37 mu mol g(subscript)-1, compared to 20% in the undisturbed group, at 8.64 +/- 0.87 mu mol g(subscript)-1. A 100% increase in lactate ion concentration was recorded in the muscle tissues of disturbed animals to reach 5.53 +/- 0.49 mu mol g(subscript)-1, compared to a 15% increase in the undisturbed group, at 2.83 +/- 0.29 mu mol g(subscript)-1.The monitoring of the physiological profiles of lobsters during extended periods (up to 72 hrs) of recovery in holding tanks revealed significant shifts in their physiological profiles and that a return to a steady state occurred only after 8 to 48 hours following re-immersion, according to the environmental conditions and the origin of the animals. Resting levels were identified after 24 hours for the haemolymph pH (close to 8.00), for the concentration in lactate, ions in the muscle tissues (2.00 to 3.00 mu mol g(subscript)-1 for the haemolymph glucose titre (0.30 to 0.60 mmol L(subscript)-1), for the haemolymph ammonia titre (close to 0.25 mmol L(subscript)-1), for ATP (6.50 to 7.70 mu mol g(subscript)-1), and for the phosphagen reserve (12.2 to 16.70 mu mol g(subscript)-1). Longer periods ([greater than]/= 48 hrs) were required for full recovery to occur when lobsters were stored at high stocking density and when lobsters were not isolated from their ++ / artificial environment. Extending the recovery period to 72 hrs resulted in slight changes in the physiological profiles of lobsters, with a 20 % decline in ATP/ADP, a 10% decrease in phosphagen concentration in the muscle tissues of the lobsters and subdued behavioural responses for those lobsters held at higher stocking densities.No attempt was made in the present study to establish the resting levels for the physiological variables surveyed. In a number of experiments, "control" groups have been studied and used as reference points to monitor changes accompanying exposure to a range of environmental conditions. The data pertaining to these different groups revealed a variability for most of the variables surveyed, suggesting that it would be hazardous to assume that these animals were undisturbed and to state with confidence that the values recorded for the variables surveyed would represent resting levels.The physiological responses of lobsters subjected to chilling procedures was investigated and significant physiological changes were identified. Short chilling procedures (3 and 6 min) were conducive of a dramatic reduction of the behavioural responses to handling, a reduction in pH values ranging between 0.13 and 0.24 of a unit, a rise in haemolymph lactate concentration by 1 to 2.6 mmol L(subscript)-1, a 20 to 100% increase in haemolymph glucose titre, a 35 to 75% decrease in phosphagen concentration. Extending the chilling period for up to 24 hrs resulted in a progressive return to control levels for most of the physiological variables surveyed. However, physiological signs of disturbance remained perceptible between 2 to 15 hours, as demonstrated by elevated lactate concentrations, lowered ATP and AP concentrations and lowered ATP/ADP values.Lobster body core temperature (CBT) reduction resulting from immersion in chilled water suggested that limited cooling ++ / effects were achieved by using the standard chilling procedures currently used by the WRL industry. Using "A" size lobsters (395 - 453 gr), a reduction of the CBT by 0.5 to 0.8 degrees celsius was recorded after 1 and 3 min immersion in 12 degrees celsius water, highlighting the limited low temperature effect exerted by these procedures in lowering the overall temperature of the mass of the product to be packed into export cartons.A study of the general physiological responses of lobsters to simulated live transport conditions in export cartons was conducted, investigating the effects of the period spent by the animals in export cartons, the effects of environmental temperature and the impact of chilling regimes. No attempt was made to duplicate exactly the conditions of cartons shipped overseas, that is carted by trucks to the airport and then transported by air to foreign markets. This study revealed that during the first 4 hours of transit, the animals exhibited physiological changes probably related to delayed responses to handling, disturbance and chilling procedures, as demonstrated by a decline in pH (0.1 to 0.3 of a unit), a rise in haemolymph ammonia (0.5 to 1 mmol L(subscript)-1) and glucose (0.5 mmol L(subscript)-1) titres, an increase in muscle lactate concentration (0.5 to 1 mu mol g(subscript)-1, a decrease in ATP concentration (1.5 mu mol g(subscript)-1, and a partial replenishment of the phosphagen reserve. These changes were less pronounced for those lobsters which underwent intermediate (30 min) chilling treatments.The subsequent periods (to 48 hours) were characterised, for all the treatments, by a rise in lactate concentration in the muscle tissues, this response being delayed for those lobsters which underwent a "6 min" or "30 min" chilling treatment. The data suggested that moderate changes in haemolymph lactate titre resulted from the increase ++ / in muscle lactate concentration, up to values ranging between 6 and 8 mu mol g(subscript)-1, beyond which levels, haemolymph lactate rose dramatically, to reach values up to 19.98 mmol L(subscript)-1. The ATP concentration remained relatively constant up to 18 - 26 hours, after which a steep decline was recorded to reach values below or close to 4 mu mol g(subscript)-1 after 42 hours, suggesting that the adenylate pool was maintained, probably through aerobic and anaerobic pathways of energy generation and by the "buffering" role played by the phosphagen reserve. After 24 to 36 hours, all the lobsters exhibited signs of energy depletion, as demonstrated by the changes in ATP/ADP ratio. A concomitant increase in lactate ion concentration and a decrease in haemolymph glucose titre was recorded, suggesting that anaerobic metabolism had become the major component of energy production. Simultaneously, a marked increase in the internal carton temperature was identified, which probably induced an increase in the metabolic rate of the lobsters. This "temperature effect" was delayed for up to 32-38 hrs transit, for those lobsters which underwent intermediate (30 min) and extended (24 hrs) chilling treatments. The changes in haemolymph pH and calcium titre suggest that the initial decline in pH identified at the completion of the first 4 hours of transit was, at least partially, compensated after 26 - 32 hours. A 30 to 40% increase in haemolymph calcium titre was recorded after 4 hours of transit, suggesting that bicarbonate ions were released in order to buffer the pH of the haemolymph. However, a decrease in pH (0.1 to 0.3 of a unit) was recorded during the subsequent periods suggesting that the bicarbonate buffering capacity did not suffice to match the recorded massive rise in lactate titre.By extending the duration of the chilling procedures and by using refrigerated ++ / material (wood-shaving fillers, ice-bottles), lower temperatures were achieved inside the packaging cartons and these were maintained for longer periods of transit (up to 20 hours), delaying the effect of the external environment on the temperature changes recorded inside the cartons and the concomitant metabolic responses of the animals. This effect was also achieved by maintaining the cartons in controlled temperature environments ([less than] 20 degrees celsius) and, to a lesser extent, by improving the insulation capacity of the polystyrene cartons.This study constitutes an overview of the physiological responses of Panulirus cygnus to post-harvest handling procedures currently used by the WRL industry. It revealed that an improved return for the Industry could be achieved by reducing the debilitating effects exerted on the lobsters by handling, exposure to air and elevated environmental temperature. It provides direction for future research, aimed at improving the quality and hence, the financial return in the live export of WRL.
|
3 |
Molecular phylogeny and population genetic structure of the shallow-water spiny lobster Panulirus homarus in the South West Indian Ocean region : implications for management.Reddy, Mageshnee Mayshree. 29 November 2013 (has links)
The scalloped spiny lobster, Panulirus homarus has a subspecies trio that are widely
distributed in shallow-water habitats in the South West Indian Ocean. Subspecies are
defined by differences in colour and abdominal sculptural pattern. A red variety with the
megasculptural carapace pattern, P. h. rubellus is distributed along the south east coast
of Africa and Madagascar, where they are endemic. Along the African coast P. h.
rubellus stocks traverse political boundaries, Mozambique and South Africa. This
project aimed to facilitate regional fisheries management of shared stocks by employing
genetic tools to determine whether stocks (or populations) are indeed shared between
countries. Lobster samples were collected from seven localities throughout the east
African coast. The mitochondrial cyctochrome c oxidase subunit 1 region was
sequenced to assess the genetic diversity 1) between different subspecies, P. h. homarus
and P. h. rubellus and 2) between populations of P. h. rubellus across its African
distribution range. Using DNA barcoding methods, genetic diversity was also found
between morphologically distinct subspecies, Panulirus homarus homarus and P. h.
rubellus which differed genetically by ca. 2-3% in sequence divergence. Both
subspecies were monophyletic relative to the out-group taxa and formed well supported
sister clades (BI: 1.00, ML: 93%, P: 100%, NJ: 100%). The distribution of P. h.
rubellus along the African coast occurs adjacent to different current regimes and
therefore varied larval transport modes (i.e. Agulhas Current and inshore countercurrents
along the Eastern Cape). This may have driven the formation of subpopulations
(ΦPT = 0.104, p = 0.010) which differ by ca. 1.7% in sequence difference. The pattern of
gene flow of populations of P. h. rubellus lends support to the Agulhas Current being a
major mode of larval transport as well as corroborates previous abundance and
distribution records. Time since population expansion estimates for the P. h. homarus
and P. h. rubellus subspecies as well as for the P. h. rubellus subpopulations dated back
to the mid-Holocene Epoch in accordance with a warmer, more stable marine
environment. Genetically distinct subspecies of P. homarus as well as differentiated
subpopulations of P. h. rubellus calls for a re-visit of the current collective management
of P. homarus as well as P. h. rubellus as a single genetic stock along the south east
African coast. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2013.
|
4 |
Comparison of three survey methods applied to the recreational rock lobster fishery of Western AustraliaBaharthah, Tara. January 2007 (has links)
Thesis (M.Sc.)--Edith Cowan University, 2007. / Submitted to the Faculty of Computing, Health and Science. Includes bibliographical references.
|
5 |
Diet and trophic role of western rock lobsters (Panulirus cygnus George) in temperate Western Australian deep-coastal ecosystems (35-60m)Waddington, Kris Ian January 2008 (has links)
[Truncated abstract] Removal of consumers through fishing has been shown to influence ecosystem structure and function by changing the biomass and composition of organisms occupying lower trophic levels. The western rock lobster (Panurilus cygnus), an abundant consumer along the temperate west coast of Australia, forms the basis of Australia's largest single species fishery, with catches frequently exceeding 11000 tonnes annually. Despite their high abundance and commercial importance, the diet and trophic role of adult lobster populations in deep-coastal-ecosystems (35-60 m) remains unknown. An understanding of the diet and trophic role of lobsters in these ecosystems is a key component of the assessment of ecosystem effects of the western rock lobster fishery. This study uses gut content and stable isotope analyses to determine the diet and trophic role of lobsters in deep-coastal ecosystems. Dietary analysis indicated adult lobsters in deep-coastal ecosystems were primarily carnivorous with diet reflecting food available on the benthos. Gut content analyses indicate crabs (62 %) and amphipods/isopods (~10 %) are the most important lobster dietary sources. Stable isotope analysis indicates natural diet of lobsters in deep coastal ecosystems is dominated by amphipods/isopods (contributing up to ~50 %) and crabs (to ~75 %), with bivalves/gastropods, red algae and sponges of lesser importance (<10 % of diet each). Diet of lobsters in deep-coastal ecosystems differed from that reported for lobsters inhabiting shallow water ecosystems in this region, reflecting differences in food availability and food choice between these ecosystems. Bait from the fishery was also determined (by stable isotope analyses) to be a significant dietary component of lobsters in deep-coastal ecosystems, contributing between 10 and 80 % of lobster food requirements at some study locations. '...' Given observed effects of organic matter addition in trawl fisheries, and also associated with aquaculture, bait addition is likely to have implications for processes occurring within deep-coastal ecosystems in this region, particularly given its oligotrophic status, most likely by increasing the food available to scavenging species. Removal of lobsters from deep-coastal ecosystems may affect the composition and abundance of lobster prey communities through a reduction in predation pressure. Such effects have been demonstrated for other spiny lobster species. These effects are typically most observable amongst common prey taxa which in other studies have been commonly herbivores. In deep-coastal ecosystems, crabs and amphipods/isopods are the most common prey taxa and most likely to be effected. The ecosystem-impacts of top-down control of non-herbivorous prey species is unknown and constrains the inferences possible from this study. However, the establishment of 'no-take' areas in deep-coastal ecosystems would allow the ecosystem effects of lobster removal to be further assessed in these deep-coastal ecosystems. While data from the current study did not allow the ecosystem effects of lobster removal to be properly assessed, this study provided information regarding the ecology of western rock lobsters in previously unstudied ecosystems.
|
6 |
Restructuring and adjustment in resource-dependent coastal communities : a case study of the Western rock lobster fleet hosting communitiesHuddleston, Veronica January 2009 (has links)
In an attempt to address the seeming imbalance within studies of rural communities in Australia linked to primary industries, this study examines the broader aspects of policy changes and bio-economic imperatives in the Western Rock Lobster Fishery and the effects of the restructuring of the fishery on communities that host the rock lobster fleet. It is an innovative study in that it is one of the first comprehensive studies of industry restructuring in the fisheries sector; a study of the linkages and implications of restructuring on the social, economic and cultural facets of coastal communities in Western Australia. Globalisation in the fishery sector, aided by technological advances, has resulted in a greater exploitation of high-value fisheries for export. Intensified globalisation has also brought about environmental and social standards that ensure the survival of by-catch species and promote responsible codes of fishing practice. In Australia, the active support of the government for globalisation, led to the adoption of export-oriented policies emphasising competitiveness and efficiency. Consideration of market principles thus govern fisheries regulators when deciding on the management arrangements to adopt for a particular fishery. In considering a number of policy instruments and management measures, government regulators also consider the conservation of marine resources alongside the production of significant economic and social benefits. The Western Rock Lobster Fishery is the most valuable single species fishery in Western Australia with a sizeable financial and employment contribution to coastal communities along the Western Australian coast. Any management scheme adopted for this fishery, as such, not only has to take into account biological and environmental imperatives but also economic and social objectives. The analysis of the fishery undertaken in this thesis underlines the need for a holistic view of fishery management that takes into consideration not only biological sustainability, but also promotes an understanding of fishers' behaviours and fishing patterns and the consequent effects on specific communities. The demographic and social changes that affect rural communities further complicate the economic restructuring at the fishery level, with fishers' responses differing based on their circumstances and preferences. This thesis presents a snapshot of a fishery deliberating changes in management arrangements and its effects on coastal communities whose socio-demographic and economic development historically has depended, and to a great extent is still dependent, upon rock lobster fishing. It provides empirical evidence that lends support to the view that the pro-market policies promoting competition and entrepreneurialism have resulted in a spatially uneven development in regional Australia. Specific localities can deal with the changes brought about by globalisation and policy change. However, the manner in which these communities deal and cope with these changes depends on a number of factors, among others, the level of diversification of the local economy, demographic and social structures, and other factors such as the level of resilience and the social capital base within the community.
|
Page generated in 0.0963 seconds