Spelling suggestions: "subject:"tet impregnation"" "subject:"beet impregnation""
1 |
Evaluation of alkali- impregnated honeycomb catalysts for NOx reduction in the SCR-processJohansson, Sofia January 2006 (has links)
<p>Samples of SCR catalysts were impregnated with the following alkali salts; KCl, K2SO4 and ZnCl2 at two different concentrations in a wet impregnation method. The activities of the six samples were measured in a test reactor and at different temperatures between 250-350 ºC. Compared to fresh catalyst, the impregnated samples all had lower activity. It seems like KCl is the most poisoning salt, depending on the lowest value of the activity. The experimental results are expected as compared to earlier articles, which reports that all alkali salts has deactivating effects on a catalyst and that KCl is among the most poisoning ones. By making a cross-section SEM analysis, the penetration of the metals at different depths in to the catalyst material wall was evaluated. An ICP-AES analysis was carried out in order to see the concentration of K and Zn of the test samples. Finally, the pore diameter and active surface was measured by BET method. Since the values of the active surface didn’t change compared to a fresh catalyst and the pore diameter was only slightly decreased we can suppose that the alkali salts deactivates the catalyst by coating of the catalyst pore structure and not as a pore blocking.</p>
|
2 |
Evaluation of alkali- impregnated honeycomb catalysts for NOx reduction in the SCR-processJohansson, Sofia January 2006 (has links)
Samples of SCR catalysts were impregnated with the following alkali salts; KCl, K2SO4 and ZnCl2 at two different concentrations in a wet impregnation method. The activities of the six samples were measured in a test reactor and at different temperatures between 250-350 ºC. Compared to fresh catalyst, the impregnated samples all had lower activity. It seems like KCl is the most poisoning salt, depending on the lowest value of the activity. The experimental results are expected as compared to earlier articles, which reports that all alkali salts has deactivating effects on a catalyst and that KCl is among the most poisoning ones. By making a cross-section SEM analysis, the penetration of the metals at different depths in to the catalyst material wall was evaluated. An ICP-AES analysis was carried out in order to see the concentration of K and Zn of the test samples. Finally, the pore diameter and active surface was measured by BET method. Since the values of the active surface didn’t change compared to a fresh catalyst and the pore diameter was only slightly decreased we can suppose that the alkali salts deactivates the catalyst by coating of the catalyst pore structure and not as a pore blocking.
|
3 |
Síntese e caracterização de titanatos lamelares impregnados com Mg2+/MgO ou La3+/La2O3 e sua utilização em reações de transesterificação / Synthesis and characterization of layered titanates impregnated whit Mg+/MgO ou La3+/La2O3 and their utilization on transesterification reactionsSantos, Regiane Lopes dos 01 October 2010 (has links)
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2016-02-04T13:32:20Z
No. of bitstreams: 2
Dissertação - Regiane Lopes dos Santos - 2010.pdf: 2296508 bytes, checksum: 8c7da40e51ba04f72f1319279074de08 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-02-11T11:27:11Z (GMT) No. of bitstreams: 2
Dissertação - Regiane Lopes dos Santos - 2010.pdf: 2296508 bytes, checksum: 8c7da40e51ba04f72f1319279074de08 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-02-11T11:27:12Z (GMT). No. of bitstreams: 2
Dissertação - Regiane Lopes dos Santos - 2010.pdf: 2296508 bytes, checksum: 8c7da40e51ba04f72f1319279074de08 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2010-10-01 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Potassium tetratitanate (K2Ti4O9) and sodium trititanate (Na2Ti3O7) were
synthesized by solid state reaction at 800°C and wet impregnated using
Mg2+/La3+ or nanoparticles of MgO/La2O3 varying ion/oxide content in 1, 5 or
10% of matrix weight. MgO and La2O3 synthesized by precipitation method and
their mean crystallite size calculated in 11 nm and 72 nm, respectively.
Synthesized materials were characterized by X ray diffractometry,
termogravimetry, N2 adsorption, mid-infrared spectroscopy, transmission
electron microscopy and they were applied on transesterification reactions
using mixtures of methyl acetate/ethanol and ethyl acetate/methanol. Interlayer
distance calculated for solids is about 8 Å. Impregnation of ion/oxide in matrices
K2Ti4O9 and Na2Ti3O7 produced structural changes like loss of crystallinity for
some of them including peak broadening or disappearing. All synthesized
materials, after burning in an atmosphere of N2 (g), lost mass related to the exit
of surface water and interlamellar water. Materials showed low surface area,
with values below 5 m2/g. In general, powder utilized had conversion rates
between 10 and 80%. Emphasis should be given to pure matrices which
presented conversions rates equal or higher than impregnated powders, and
the use of matrix K2Ti4O9 led to better results. Among the oxides chosen for
impregnation, higher efficiency was observed for MgO. Some powders were
reused for the same reactions and its activity decreased in each reaction cycle.
Reaction mixture analysis after reuse tests to K2Ti4O9 revealed partial leaching
of K+ ions, however XRD patterns profile analysis did not show structural
changes occurrence. A proposal to explain layered titanate activity on
transesterification reactions is made based on acid-base properties of layers
and output of K+ from interlamellar area. / Tetratitanato de potássio (K2Ti4O9) e trititanato de sódio (Na2Ti3O7) foram
sintetizados por meio de síntese no estado sólido a 800°C, impregnados por via
úmida utilizando Mg2+/La3+ ou nanopartículas de MgO/La2O3 variando o teor do
íon/óxido em 1, 5 ou 10% em relação à massa da matriz. MgO e La2O3 foram
sintetizados por precipitação e tiveram seu diâmetro médio de cristalito
calculados em 11 nm e 72 nm, respectivamente. Os materiais sintetizados
foram caracterizados por difratometria de raios X, termogravimetria, fisissorção
de N2(g), espectroscopia na região do infravermelho médio, microscopia
eletrônica de transmissão e foram aplicados em reações de transesterificação
utilizando misturas reacionais acetato de metila/etanol e acetato de
etila/metanol. A distância interlamelar calculada para os sólidos é da ordem de
8 Å. A impregnação dos íons/óxidos nas matrizes K2Ti4O9 e Na2Ti3O7 produziu
mudanças estruturais incluindo perda de cristalinidade para algumas delas
incluindo alargamento ou desaparecimento de picos. Todos os materiais
sintetizados, após queima sob atmosfera de N2(g), perderam massa relativa à
saída de água superficial e água interlamelar. Os materiais apresentaram baixa
área superficial, com valores abaixo de 5 m2/g. De um modo geral, os pós
utilizados tiveram taxas de conversão entre 10 e 80%. Destaque deve ser dado
às matrizes puras que apresentaram taxas de conversão iguais ou superiores
aos pós impregnados, sendo que o uso da matriz K2Ti4O9 levou aos melhores
resultados. Dentre os óxidos escolhidos para a impregnação, a eficiência maior
foi observada para MgO. Alguns pós foram reutilizados para as mesmas
reações e a atividade diminuiu a cada ciclo de reação. A análise da mistura
reacional após os testes de reuso para a matriz K2Ti4O9 revelou lixiviação
parcial de íons K+, entretanto a análise do perfil dos padrões de DRX dos pós
após reuso não revelou a ocorrência de mudanças estruturais. Uma proposta
para explicar a atividade dos titanatos lamelares nas reações de
transesterificação é feita baseando-se nas propriedades ácido-base das
lamelas e na saída de íons K+ da região interlamelar.
|
4 |
Synthesis and characterization of micro- and mesoporous materials for low temperature selective catalytic reduction of nitrogen oxidesKasongo Wa Kasongo, Jean B. January 2011 (has links)
Doctor Educationis / In summary, it has been shown during this study that bimetallic Fe and Mn containing catalysts can be prepared by wet impregnation and not by ion exchange because of the competition between two different metals at different oxidation number. Only a single metallic phase catalyst could be prepared successfully by using ion exchange. / South Africa
|
Page generated in 0.0957 seconds