Spelling suggestions: "subject:"wetland."" "subject:"hetland.""
451 |
Stratigraphic Analysis and Transgression Rates of Maine's Coastal Wetlands Due to Rising Sea LevelTheriault, Holly Jean January 2008 (has links) (PDF)
No description available.
|
452 |
The role of coastal plant community response to climate change: implications for restoring ecosystem resiliencyKalk, Hannah June 01 December 2011 (has links)
Accelerated sea-level rise and increased intensity of tropical storm events have challenged the conventional approaches to conservation and restoration of coastal ecosystems. In coastal communities, where survival will depend largely on the ability of species to adapt to rapidly shifting conditions or become established farther inland, historic assemblages may be lost. Seed banks may be an important component of resilience and recovery in response to altered inundation regimes, should they contain species able to adapt or migrate inland. This study assess the ability of seed banks to act as ecological buffers to storm surge disturbances and to instill ecological resilience in degraded and vulnerable coastal ecosystems. Above-ground, seed bank and propagule assemblages were surveyed from historic communities at the Grand Bay National Estuarine Research Reserve. Artificial storm surge experiments revealed that that seed banks were not well distributed throughout the coastal transition communities and that seed bank responses following storm surges are likely to vary among the different plant communities. While some relict species are expected to respond following disturbances, ruderal species are especially dominant in the upland seed bank communities and may, at least in the short term, cause shifts away from the historical assemblages. The apparent absence of seaward species in the upland seed banks may make assisted migration an important tool for the survival of communities unable to keep pace. Community response following translocation of propagule bank application onto highly degraded buyout properties suggested that this technique may be an effective tool in introducing resilience into ecosystems already experiencing the effects of climate change. They resulted in the establishment of diverse and variable communities, containing indicator species from a number of historic communities with varying environmental tolerances. Long-term monitoring of community change and reproductive output of target species may indicate the utility of community translocation in creating resilient and future-adapted communities.
|
453 |
Odstraňování mědi z odpadních vod za využití umělých mokřadů / Removal of copper from wastewater using a constructed wetlandPOMIJOVÁ, Zuzana January 2015 (has links)
This work deals with the efficiency of copper removal from wastewater using constructed wetlands. The object of this study was the vegetation wastewater treatment plant in the village of Slavošovice. During 2014, I used atomic absorption spectrometry to determine Cu concentration in the effluent. Samples were taken from different parts of the treatment plant (the inflow and outflow, and selected sampling sites in the vegetation bed). The obtained results enable to calculate the efficiency of copper removal from municipal wastewater.
|
454 |
Natural mechanisms of erosion prevention and stabilisation in a Marakele Peatland ; implications for conservation managementBootsma, Antoinette Alexandra 12 1900 (has links)
The Matlabas mire, an actively peat accumulating wetland, is located in the headwaters of the Matlabas River, Marakele National Park, Limpopo Province, South Africa. Various seepage zones and artesian peat domes are contained in this peatland that consists of two tributaries of which the western one is partially channelled.
The occurrence of decaying peat domes and desiccated areas with terrestrial vegetation, as well as the apparent erosion on the western tributary, have raised concerns on the health of this wetland.
A network of piezometers was installed in the mire and results confirm that the system is fed primarily from seepage from the slopes of the catchment. Chemical analysis and temperature recorded indicate an isolated groundwater source of which the water does not mix with surface water. This is linked with isotope analysis of the age of peat in various sections of the mire.
Erosion was attributed to anthropogenic changes in the catchment. Management recommendations include rehabilitation and reinstating the driving forces that support the mire. / Environmental Sciences / M. Sc. (Environmental Management)
|
455 |
Vliv eutrofizace na primární produkci travinného mokřadu / Effect of eutrophication on primary production of a herbaceous wetlandBORDOVSKÁ, Monika January 2012 (has links)
This work is part of a study of wet meadows within the project GA CR 526/09/1545. The objective of the project is to determine the importance of newly assimilated carbon for the plat-soil interactions of plants with in wet grassland ecosystems in changing environmental conditions. As part of this project, a wet grassland ecosystem near Hamr situated in the Nežárka river floodplain was assessed in terms of aboveground production. This work includes data from 2010 and 2011. Each year the biomass was sampled two times. At each sampling, 24 samples were collected from plots differing in the intensity of fertilization. The treatments included high intensity of fertilization, low intensity of fertilization and no fertilization. In 2010, the annual production of aboveground biomass was 863.88 gm-2 on plots with a high intensity of fertilization, 788.46 gm-2 on plots with low intensity of fertilization and areas 839.69 gm-2 on unfertilized plots. In 2011 the annual production of aboveground biomass was 1149.71 gm-2 on plots with high fertilization, 953.73 gm-2 in plots with low fertilization, and 930.25 gm-2 on plots without fertilization.
|
456 |
Assessment of the long-term response to rehabilitation of two wetlands in KwaZulu-Natal, South AfricaCowden, Craig January 2018 (has links)
Assessing the outputs and outcomes of wetland rehabilitation activities is recognised by the 'Working for Wetlands' programme in South Africa as important, but to date has been limited. An assessment of the ecological outcomes and the structural outputs of the Working for Wetlands rehabilitation implemented in the Killarney and Kruisfontein wetlands, KwaZulu-Natal, in 2005 was undertaken. The assessment of outcomes included an evaluation of the changes in terms of ecological integrity and the supply of ecosystem services, using WET-Health and WET- EcoServices assessment techniques respectively, and vegetation composition. Improvements in hydrological and geomorphic integrity were recorded in both wetlands, resulting in improved ecosystem services delivery. However, investigation of vegetation composition using the Wetland Index Value and Floristic Quality Assessment Index showed that, seven years after rehabilitation, KiNamey's vegetation composition had improved, but Kruisfontein's vegetation was still largely dominated by pioneer species and appeared to be stable, but in a severely transformed state. The response of these wetlands has shown that sites for rehabilitation should be screened before work begins, and wetlands requiring intensive management of vegetation recovery should be assessed in terms of the objectives and the anticipated benefits of the project. The assessment of the outputs included an evaluation of structural integrity, survival and cost- effectiveness. Limited issues, mostly relating to deviations from the designs during construction, were identified with regards to the structural outputs at each of the wetlands. However, the spreader canals at both Killarney and Kruisfontein wetlands were not functioning as intended and concentrated flows from the spreader canals were evident in both wetlands. The use of spreader canals should therefore be carefully planned and implemented for future wetland rehabilitation projects. Consideration of ZAR per hectare equivalent re-instated/secured provided a useful initial means of determining the cost-effectiveness of the wetland rehabilitation. However, additional factors need to be considered, such as, the nature of the rehabilitation activities, the type and size of the problem being addressed, rehabilitation of priority wetlands, limitations imposed by funders, and risks that need to be addressed by the rehabilitation strategy. Furthermore, the evaluation of the Killarney and Kruisfontein wetlands highlighted the need to revise the Water Research Commission's Wetland Management Series, especially those documents or guidelines relating to rehabilitation planning (WET-RehabPlan), interventions (WET-RehabMethods), and monitoring and evaluation (WET-RehabEvaluate).
|
457 |
Hydrologic and hydraulic processes in northern treatment peatlands and the significance for phosphorus and nitrogen removalRonkanen, A.-K. (Anna-Kaisa) 18 August 2009 (has links)
Abstract
The understanding of flow processes is a key to evaluating treatment efficiency in constructed wetlands. This work focuses on the effects of flow paths on phosphorus (P) and nitrogen (N)retention in four treatment wetlands constructed on pristine peatlands in Finland. Particular attention was paid to water residence time, effective flow area and effective flow depth. Both an artificial tracer test and a new method based on the analysis of stable oxygen and hydrogen isotope distributions were employed. Tracer tests were used to calibrate steady-state flow models created using a groundwater modelling MODFLOW code. Furthermore, concentrations of P, Al and Fe in the peat and concentration of N in the surface water were measured. Surface water tracer distributions showed overland flow to be the dominant flow process and it was divided into a preferential flow area and dead zones. Also, active channel formation was observed during the years of the study (2002–2005). The results indicate that the hydraulic performance might deteriorate drastically within a short period of time. The active flow areas in the peatlands comprised only about 40–48% in summer, meaning that large areas with potential for nutrient removal were left unused. Flow simulations showed that a more optimal length of the distribution ditch will create a larger effective flow area and possibly could prevent channel formation. The peat P concentration was 1.8±3.9 mg g-1, and P was accumulated in the preferential flow area. The peat P concentration correlated positively with Al in the Ruka peatland treating wastewater. The results indicate that precipitation chemicals increase the P retention capacity of peatland substantially and maintain P retention at a stable level despite variable P loads. Furthermore, the results indicate that the accumulation of P to peat via adsorption and chemical precipitation is the major P removal process even after 10 years of loading. In Ruka, calculated N concentrations in surface water obtained with a first-order area model, together with regression analysis of the rate constant, were in good agreement with observed N concentrations. If a removal of 70% is to be achieved, the NH4-N loading to the peatland should be below 0.10 mg m2 d-1.
|
458 |
Metal (Pb, Zn, Cu, Cd, Fe) uptake, tolerance and radial oxygen loss in typical wetland plantsDeng, Hong 01 January 2005 (has links)
No description available.
|
459 |
The hydrogeomorphology of the Featherstone Kloof CatchmentNtakumba, Stanley Sixolile 29 May 2013 (has links)
Wetlands are an important part of the landscape as hydrogeomorphological ecosystems. Over the centuries their importance has not received relevant attention; instead they have been treated as wastelands impeding development for maximum economic benefits. Research evidence from different parts of the world has influenced the change of such negative perceptions to an extent that the issue of wetlands' rehabilitation/restoration, conservation and management is firmly on the global agenda and local agendas of various countries, as evidenced by the adoption of the Ramsar Convention in 1971, and the Working for Water and Working for Wetlands programmes of the South African government. The aim of this research was to investigate the hydrological and geomorphological functions of a headwater wetland located in the Featherstone Kloof Catchment near Grahamstown, South Africa. The research was based on the hypotheses that wetlands store sediments, attenuate floods, store water and prolong downstream flows. A literature survey was conducted to gauge the state of knowledge about wetlands, particularly their hydrogeomorphology. An attempt was made to locate the study area within the broad historical and spatial context using a number of methods, including the radiocarbon dating of wetland sediments, the review of relevant literature and the analysis of historical hydroclimatic data. The results revealed that the wetland has existed for approximately 2000 years - as the oldest radiocarbon date obtained was 1850±50 BP. An analysis of more than a century (+120 years) long Grahamstown rainfall series indicated a steady fluctuation of rainfall around the mean, with regular decada1 cycles of wet and dry spells. Years with more rain below average were more common than those with higher rainfall, and storms events were quite common in the III area over the period. The distribution of seasons in the area over a calendar year period was demonstrated through the use of evaporation data. An intensive monitoring of hydrological and geomorphological variables was carried out using a combination of methods. The topography of the instrumented site was determined using a Total Station from reference benchmarks. Hydrological measurements included a nest of forty-eight piezometers for water table monitoring, and streamflow gauges at the upstream and downstream limits of the study site. Soil stratigraphic analysis was carried out through field techniques and laboratory measurements. A survey of wetland sediments was carried out after the main floods events. Data generated were used to analyse relationships between various variables and their role on the functioning of the wetland. The water balance of the wetland was quantified. The results indicated that the wetland was able to perform the cited hydrogeomorphological functions to some extent. For example, one of the key findings of this research is that the wetland was important in sustaining base flows under normal circumstances. However, the wetland did little to attenuate large floods. The results also revealed some important questions that require further research, including the role played by extreme flood events in altering wetland characteristics, the contribution of each water balance component in the hydrological functioning of wetlands, and importance of quantifying sediment budgets of headwater wetlands. The study demonstrated the complex nature of the wetland hydro geomorphology and that certain questions about wetlands require direct field monitoring to be better understood. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
|
460 |
Using Remote Sensing to Evaluate Wetland Recovery in the Northern Tampa Bay Area Following Reduction in Groundwater WithdrawalsElder, Amor 24 March 2017 (has links)
In the past, the Northern Tampa Bay Area (NTBA) wetlands saw severe declines in hydrologic conditions due to excessive groundwater withdrawal rates. Eventually these rates were reduced to allow the wetlands to recover. To monitor this recovery, the Southwest Florida Water Management district (SWFWMD) set up a fieldwork based scoring methodology, called the Wetlands Assessment Procedure (WAP). WAP has been used in many studies of the area since groundwater withdrawal reductions; with many of those studies finding the recovery to be mixed at best. However, these studies were very limited in the number of wetlands they could assess due to the limitations of fieldwork. Therefore, it was proposed that remotely sensed variables associated with water consumption and stress be used to assess the recovery of the NTBA wetlands, as remote sensing allows for efficient assessments of targets over large area. Utilizing ASTER imagery scenes from 2005 and 2014, 211 wetlands’ remotely sensed responses of NDVI, Land Surface Temperature (LST), and Evapotranspiration (ET) were mapped and statistically examined for trends indicating improvement or decline. Furthermore, a subset of WAP scores for the two years were examined and compared to the remotely sensed values. The results were contradictory, with remotely sensed responses showing an improvement over the time period, WAP scores indicating a decline in hydrologic conditions, and the two methods showing little to no fit when modeled against each other. As such, it is believed at this time that the remotely sensed method is not suitable for measuring the indicators of wetland recovery used in the WAP methodology.
|
Page generated in 0.0479 seconds