• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 12
  • 12
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Altering Wettability in Gas Condensate Sandstone Reservoirs for Gas Mobillity Improvement

Fernandez Martinez, Ruth Gabriela 2011 May 1900 (has links)
In gas-condensate reservoirs, production rate starts to decrease when retrograde condensation occurs. As the bottomhole pressure drops below the dewpoint, gascondensate and water buildup impede flow of gas to the surface. To stop the impairment of the well, many publications suggest wettability alteration to gas-wetting as a permanent solution to the problem. Previous simulation work suggests an "optimum wetting state" to exist where maximum gas condensate well productivity is reached. This work has direct application in gas-condensate reservoirs, especially in identifying the most effective stimulation treatment which can be designed to provide the optimum wetting conditions in the near-wellbore region. This thesis presents an extensive experimental study on Berea sandstone rocks treated with a fluorinated polymer. Various concentrations of the polymer are investigated to obtain the optimum alteration in wettability to intermediate gas-wet. This wetting condition is achieved with an 8% polymer solution treatment, which yields maximum gas mobility, ultimately increasing the relative permeability curves and allowing enhanced recovery from gas-condensate wells. The treatments are performed mainly at room conditions, and also under high pressure and high temperature, simulating the natural environment of a reservoir. Several experimental techniques are implemented to examine the effect of treatments on wettability. These include flow displacement tests and oil imbibitions. The experimental work took place in the Wettability Research Lab in Texas A&M University at Qatar in Doha, Qatar. The studies in this area are important to improve the productivity of gas-condensate reservoirs where liquid accumulates, decreasing production of the well. Efficiency in the extraction of natural gas is important for the economic and environmental considerations of the oil and gas industry. Wettability alteration is one of the newest stimulation methods proposed by researchers, and shows great potential for future research and field applications.
2

Modeling wettability alteration in naturally fractured carbonate reservoirs

Goudarzi, Ali 27 February 2012 (has links)
The demand for energy and new oil reservoirs around the world has increased rapidly while oil recovery from depleted reservoirs has become more difficult. Oil production from fractured carbonate reservoirs by water flooding is often inefficient due to the commonly oil-wet nature of matrix rocks. Chemical enhanced oil recovery (EOR) processes such as surfactant-induced wettability alteration and interfacial tension reduction are required to decrease the residual oil saturation in matrix blocks, leading to incremental oil recovery. However, improvement in recovery will depend on the degree of wettability alteration and interfacial tension (IFT) reduction, which in turn are functions of matrix permeability, fracture intensity, temperature, pressure, and fluid properties. The oil recovery from fractured carbonate reservoirs is frequently considered to be dominated by the spontaneous imbibition mechanism which is a combination of viscous, capillary, and gravity forces. The primary purpose of this study is to model wettability alteration in the lab scale for both coreflood and imbibition cell tests using the chemical flooding reservoir simulator. The experimental recovery data for fractured carbonate rocks with different petrophysical properties were history-matched with UTCHEM, The University of Texas in-house compositional chemical flooding simulator, using a highly heterogeneous permeability distribution. Extensive simulation work demonstrates the validity and ranges of applicability of upscaled procedures, and also indicates the importance of viscous and capillary forces in larger fields. The results of this work will be useful for designing field-scale chemical EOR processes. / text
3

Wettability alteration with brine composition in high temperature carbonate reservoirs

Chandrasekhar, Sriram 11 December 2013 (has links)
The effect of brine ionic composition on oil recovery was studied for a limestone reservoir rock at a high temperature. Contact angle, imbibition, core flood and ion analysis were used to find the brines that improve oil recovery and the associated mechanisms. Contact angle experiments showed that modified seawater containing Mg[superscript 2+] and SO4[superscript 2-] and diluted seawater change aged oil-wet calcite plates to more water-wet conditions. Seawater with Ca[superscript 2+], but without Mg[superscript 2+] or SO₄[superscript 2-] was unsuccessful in changing calcite wettability. Modified seawater containing Mg[superscript 2+] and SO₄[superscript 2-], and diluted seawater spontaneously imbibe into the originally oil-wet limestone cores. Modified seawater containing extra SO₄[superscript 2-] and diluted seawater improve oil recovery from 40% OOIP (for formation brine waterflood) to about 80% OOIP in both secondary and tertiary modes. The residual oil saturation to modified brine injection is approximately 20%. Multi ion exchange and mineral dissolution are responsible for desorption of organic acid groups which lead to more water-wet conditions. Further research is needed for scale-up of these mechanisms from cores to reservoirs. / text
4

Enhancing the productivity of volatile oil reservoirs using fluorinated chemical treatments

Torres López, David Enrique 12 October 2011 (has links)
Many producing volatile oil reservoirs experience a significant decrease in well deliverability when the bottom-hole pressure of the well falls below the bubble point pressure. This is due to the liberation of a gas phase which resides in the pore space and blocks the flow of the oil phase. This situation is known as "gas blocking". This occurs because the presence of two or three immiscible phases (gas, oil and water) results in a reduction of the oil saturation and a decrease in the oil relative permeability. The main objective of this research was to develop an effective and durable chemical treatment method to improve and/or restore the productivity of volatile oil wells undergoing "gas blocking". The treatment method is based on the use of fluorinated surfactants in tailored solvents to increase the oil relative permeability by changing the wettability of the rock’s surface. High-temperature high-pressure (HTHP) core flood experiments were used to evaluate the uses of fluorinated surfactants under reservoir conditions. Analytical tools such as X-ray photoelectron spectroscopy (XPS), high-performance liquid chromatography (HPLC) and computerized axial tomography (CT Scan) were also used to interpret the experimental results. High-pressure high-temperature (HPHT) coreflood tests showed that the treatments improved the oil and gas relative permeability in both sandstone and limestone cores. This was observed for synthetic volatile oil mixtures with gas-oil ratios (GOR) in the range of 4000 to 13,000 scf/STB at low capillary numbers (Nc) on the order of 1x10-5 to 1x10-6 and for PVT ratios greater than 0.5. The fluorinated chemical treatments were effective in the presence of connate water over the temperature range of 155°F to 275°F. Wettability alteration was measured using contact angle and imbibition rate tests. Results from analytical tools showed that fluorinated surfactants were uniformly adsorbed along the core and the surfactant desorption after treatment was low (10 ppm or less). The gas saturation decreased following treatment and both the oil and gas relative permeability increased. Numerical simulations using the measured relative permeability data were used to estimate the gain in productivity for treated wells. The proposed fluorinated chemical treatments could be used as a preventive treatment or for a damaged well that has already been producing below the bubble point to increase oil production rates and recoverable reserves. / text
5

Development of a non-isothermal compositional reservoir simulator to model asphaltene precipitation, flocculation, and deposition and remediation

Darabi, Hamed 25 June 2014 (has links)
Asphaltene precipitation, flocculation, and deposition in the reservoir and producing wells cause serious damages to the production equipment and possible failure to develop the reservoirs. From the field production prospective, predicting asphaltene precipitation, flocculation, and deposition in the reservoir and wellbore may avoid high expenditures associated with the reservoir remediation, well intervention techniques, and field production interruption. Since asphaltene precipitation, flocculation, and deposition strongly depend on the pressure, temperature, and composition variations (e.g. phase instability due to CO2 injection), it is important to have a model that can track the asphaltene behavior during the entire production system from the injection well to the production well, which is absent in the literature. Due to economic concerns for asphaltene related problems, companies spend a lot of money to design their own asphaltene inhibition and remediation procedures. However, due to the complexity and the lack of knowledge on the asphaltene problems, these asphaltene inhibition and remediation programs are not always successful. Near-wellbore asphaltene inhibition and remediation techniques can be divided into two categories: changing operating conditions, and chemical treatment of the reservoir. Although, the field applications of these procedures are discussed in the literature, a dynamic model that can handle asphaltene inhibition and remediation in the reservoir is missing. In this dissertation, a comprehensive non-isothermal compositional reservoir simulator with the capability of modeling near-wellbore asphaltene inhibition and remediation is developed to address the effect of asphaltene deposition on the reservoir performance. This simulator has many additional features compared to the available asphaltene reservoir simulators. We are able to model asphaltene behavior during primary, secondary, and EOR stages. A new approach is presented to model asphaltene precipitation and flocculation. Adsorption, entrainment, and pore-throat plugging are considered as the main mechanisms of the asphaltene deposition. Moreover, we consider porosity, absolute permeability, and oil viscosity reductions due to asphaltene. It is well known that the asphaltene deposition on the rock surface changes the wettability of the rock towards oil-wet condition. Although many experiments in the literature have been conducted to understand the physics underlying wettability alteration due to asphaltene deposition, a comprehensive mathematical model describing this phenomenon is absent. Based on the available experimental data, a wettability alteration model due to asphaltene deposition is proposed and implemented into the simulator. Furthermore, the reservoir simulator is coupled to a wellbore simulator to model asphaltene deposition in the entire production system, from the injection well to the production well. The coupled reservoir/wellbore model can be used to track asphaltene deposition, to diagnose the potential of asphaltene problems in the wellbore and reservoir, and to find the optimum operating conditions of the well that minimizes asphaltene problems. In addition, the simulator is capable of modeling near-wellbore asphaltene remediation using chemical treatment. Based on the mechanisms of the asphaltene-dispersant interactions, a dynamic modeling approach for the near-wellbore asphaltene chemical treatments is proposed and implemented in the simulator. Using the dynamic asphaltene remediation model, we can optimize the asphaltene treatment plan to reduce asphaltene related problems in a field. The results of our simulations show that asphaltene precipitation, flocculation, and deposition in the reservoir and wellbore are dynamic processes. Many parameters, such as oil velocity, wettability alteration, pressure, temperature, and composition variations influence the trend of these processes. In the simulation test cases, we observe that asphaltene precipitation, flocculation, and deposition can occur in primary production, secondary production, or EOR stages. In addition, our results show that the wettability alteration has the major effect on the performance of the reservoir, comparing to the permeability reduction. During CO2 flooding, asphaltene precipitation occurs mostly at the front, and asphaltene deposition is at its maximum close to the reservoir boundaries where the front velocity is at its minimum. In addition, the results of the coupled reservoir/wellbore simulator show that the behavior of asphaltene in the wellbore and reservoir are fully coupled with each other. Therefore, a standalone reservoir or wellbore simulator is not able to predict the asphaltene behavior properly in the entire system. Finally, we show that the efficiency of an asphaltene chemical treatment plan depends on the type of dispersant, amount of dispersant, soaking time, number of treatment jobs, and the time period between two treatment jobs. / text
6

Surfactant-enhanced spontaneous imbibition process in highly fractured carbonate reservoirs

Chen, Peila 17 June 2011 (has links)
Highly fractured carbonate reservoirs are a class of reservoirs characterized by high conductivity fractures surrounding low permeability matrix blocks. In these reservoirs, wettability alteration is a key method for recovering oil. Water imbibes into the matrix blocks upon water flooding if the reservoir rock is water-wet. However, many carbonate reservoirs are oil-wet. Surfactant solution was used to enhance spontaneous imbibition between the fractures and the matrix by both wettability alteration and ultra-low interfacial tensions. The first part of this study was devoted to determining the wettability of reservoir rocks using Amott-Harvey Index method, and also evaluating the performance of surfactants on wettability alteration, based on the contact angle measurement and spontaneous imbibition rate and ultimate oil recovery on oil-wet reservoir cores. The reservoir rocks have been found to be slightly oil-wet. One cationic surfactant BTC8358, one anionic surfactant and one ultra-low IFT surfactant formulation AKL-207 are all found to alter the wettability towards more water-wet and promote oil recovery through spontaneous imbibition. The second part of the study focused on the parameters that affect wettability alteration by surfactants. Some factors such as core dimension, permeability and heterogeneity of porous medium are evaluated in the spontaneous imbibition tests. Higher permeability leads to higher imbibition rate and higher ultimate oil recovery. Heterogeneity of core samples slows down the imbibition process if other properties are similar. Core dimension is critical in upscaling from laboratory conditions to field matrix blocks. The imbibition rate is slower in larger dimension of core. Further, we investigated the effects of EDTA in surfactant-mediated spontaneous imbibition. Since high concentration of cationic divalent ions in the aqueous solution markedly suppresses the surfactant-mediated wettability alteration, EDTA improved the performance of surfactant in the spontaneous imbibition tests. It is proposed in the thesis that surfactant/EDTA-enhanced imbibition may involve the dissolution mechanism. More experiments should be conducted to verify this mechanism. The benefits of using EDTA in the surfactant solution include but not limited to: altering the surface charge of carbonate to negative, producing the in-situ soap, reducing the brine hardness, decreasing the surfactant adsorption, and creating the water-wet area by dissolving the dolomite mineral. / text
7

Wettability alteration in high temperature and high salinity carbonate reservoirs

Sharma, Gaurav, M.S. in Engineering 02 November 2011 (has links)
The goal of this work is to change the wettability of a carbonate rock from oil wet-mixed-wet towards water-wet at high temperature and high salinity. Only simple surfactant systems (single surfactant, dual surfactants) in dilute concentration were tried for this purpose. It was thought that the change in wettability would help to recover more oil during secondary surfactant flood as compared to regular waterflood. Three types of surfactants, anionic, non-ionic and cationic surfactants in dilute concentrations (<0.2 wt%) were used. Initial surfactant screening was done on the basis of aqueous stability at these harsh conditions. Contact angle experiments on aged calcite plates were done to narrow down the list of surfactants and spontaneous imbibition experiments were conducted on field cores for promising surfactants. Secondary waterflooding was conducted in cores with and without the wettability altering surfactants. It was observed that barring a few surfactants, most were aqueous unstable by themselves at these harsh conditions. Dual surfactant systems, a mixture of a non-ionic and a cationic surfactant increased the aqueous stability of the non-ionic surfactants. One of the dual surfactant system, a mixture of Tergitol NP-10 and Dodecyl trimethyl ammonium bromide, proved very effective for wettability alteration and could recover 70-80% of OOIP during spontaneous imbibition. Secondary waterflooding with the wettability altering surfactant (without alkali or polymer) increased the oil recovery over the waterflooding without the surfactants (from 29% to 40% OOIP). Surfactant adsorption calculated during the coreflood showed an adsorption of 0.24 mg NP-10/gm of rock and 0.20 mg DTAB/gm of rock. A waterflood done after the surfactant flood revealed change in the relative permeability before and after the surfactant flood suggesting change in wettability towards water-wet. / text
8

Modeling chemical EOR processes using IMPEC and fully IMPLICIT reservoir simulators

Fathi Najafabadi, Nariman 05 November 2009 (has links)
As easy target reservoirs are depleted around the world, the need for intelligent enhanced oil recovery (EOR) methods increases. The first part of this work is focused on modeling aspects of novel chemical EOR methods for naturally fractured reservoirs (NFR) involving wettability modification towards more water wet conditions. The wettability of preferentially oil wet carbonates can be modified to more water wet conditions using alkali and/or surfactant solutions. This helps the oil production by increasing the rate of spontaneous imbibition of water from fractures into the matrix. This novel method cannot be successfully implemented in the field unless all of the mechanisms involved in this process are fully understood. A wettability alteration model is developed and implemented in the chemical flooding simulator, UTCHEM. A combination of laboratory experimental results and modeling is then used to understand the mechanisms involved in this process and their relative importance. The second part of this work is focused on modeling surfactant/polymer floods using a fully implicit scheme. A fully implicit chemical flooding module with comprehensive oil/brine/surfactant phase behavior is developed and implemented in general purpose adaptive simulator, GPAS. GPAS is a fully implicit, parallel EOS compositional reservoir simulator developed at The University of Texas at Austin. The developed chemical flooding module is then validated against UTCHEM. / text
9

Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field

Miller, Nathan 2009 December 1900 (has links)
Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea, and North Field in Qatar. The main focus of this thesis is to evaluate condensate blockage problems in the North Field, Qatar, and then propose solutions to increase well productivity in these gas condensate wells. The first step of the study involved gathering North Field reservoir data from previously published papers. A commercial simulator was then used to carry out numerical reservoir simulation of fluid flow in the North Field. Once an accurate model was obtained, the following three solutions to increasing productivity in the North Field are presented; namely wettability alteration, horizontal wells, and reduced Non Darcy flow. Results of this study show that wettability alteration can increase well productivity in the North Field by adding significant value to a single well. Horizontal wells can successfully increase well productivity in the North Field because they have a smaller pressure drawdown (compared to vertical wells). Horizontal wells delay condensate formation, and increase the well productivity index by reducing condensate blockage in the near wellbore region. Non Darcy flow effects were found to be negligible in multilateral wells due to a decrease in fluid velocity. Therefore, drilling multilateral wells decreases gas velocity around the wellbore, decreases Non Darcy flow effects to a negligible level, and increases well productivity in the North Field.
10

Modeling conformance control and chemical EOR processes using different reservoir simulators

Goudarzi, Ali 16 September 2015 (has links)
Successful field waterflood is a crucial prerequisite for improving the performance before EOR methods, such as ASP, SP, and P flooding, are applied in the field. Excess water production is a major problem in mature waterflooded oil fields that leads to early well abandonment and unrecoverable hydrocarbon. Gel treatments at the injection and production wells to preferentially plug the thief zones are cost-effective methods to improve sweep efficiency in reservoirs and reduce excess water production during hydrocarbon recovery. There are extensive experimental studies performed by some researchers in the past to investigate the performance of gels in conformance control and decreasing water production in mature waterflooded reservoirs, but no substantial modeling work has been done to simulate these experiments and predict the results for large field cases. We developed a novel, 3-dimensional chemical compositional and robust general reservoir simulator (UTGEL) to model gel treatment processes. The simulator has the capability to model different types of microgels, such as preformed particle gels (PPG), thermally active polymers (TAP), pH-sensitive microgels, and colloidal dispersion gels (CDG). The simulator has been validated for gel flooding using laboratory and field scale data. The simulator helps to design and optimize the flowing gel injection for conformance control processes in larger field cases. The gel rheology, adsorption, resistance factor and residual resistance factor with salinity effect, gel viscosity, gel kinetics, and swelling ratio were implemented in UTGEL. Several simulation case studies in fractured and heterogeneous reservoirs were performed to illustrate the effect of gel on production behavior and water control. Laboratory results of homogeneous and heterogeneous sandpacks, and Berea sandstone corefloods were used to validate the PPG transport models. Simulations of different heterogeneous field cases were performed and the results showed that PPG can improve the oil recovery by 5-10% OOIP compared to waterflood. For recovery from fractured reservoirs by waterflooding, injected water will flow easily through fractures and most part of reservoir oil will remain in matrix blocks unrecovered. Recovery from these reservoirs depends on matrix permeability, wettability, fracture intensity, temperature, pressure, and fluid properties. Chemical processes such as polymer flooding (P), surfactant/polymer (SP) flooding and alkali/surfactant/polymer (ASP) flooding are being used to enhance reservoir energy and increase the recovery. Chemical flooding has much broader range of applicability than in the past. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. The recovery from fractured carbonate reservoirs is frequently considered to be dominated by spontaneous imbibition. Therefore, any chemical process which can enhance the rate of imbibition has to be studied carefully. Wettability alteration using chemicals such as surfactant and alkali has been studied by many researchers in the past years and is recognized as one of the most effective recovery methods in fractured carbonate reservoirs. Injected surfactant will alter the wettability of matrix blocks from oil-wet to water-wet and also reduce the interfacial tension to ultra-low values and consequently more oil will be recovered by spontaneous co-current or counter-current imbibition depending on the dominant recovery mechanism. Accurate and reliable up-scaling of chemical enhanced oil recovery processes (CEOR) are among the most important issues in reservoir simulation. The important challenges in up-scaling CEOR processes are predictability of developed dimensionless numbers and also considering all the required mechanisms including wettability alteration and interfacial tension reduction. Thus, developing new dimensionless numbers with improved predictability at larger scales is of utmost importance in CEOR processes. There are some scaling groups developed in the past for either imbibition or coreflood experiments but none of them were predictive because all the physics related to chemical EOR processes (interfacial tension reduction and wettability alteration) were not included. Furthermore, most of commercial reservoir simulators do not have the capability to model imbibition tests due to lack of some physics, such as surfactant molecular diffusion. The modeling of imbibition cell tests can aid to understand the mechanisms behind wettability alteration and consequently aid in up-scaling the process. Also, modeling coreflood experiments for fractured vuggy carbonates is challenging. Different approaches of random permeability distribution and explicit fractures were used to model the experiments which demonstrate the validity and ranges of applicability of upscaled procedures, and also indicate the importance of viscous and capillary forces in larger scales. The simulation models were then used to predict the recovery response times for larger cores.

Page generated in 0.1367 seconds