• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 45
  • 23
  • 19
  • 15
  • 13
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 442
  • 95
  • 56
  • 51
  • 50
  • 50
  • 48
  • 44
  • 42
  • 39
  • 36
  • 30
  • 30
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

A Study of Surface Wetting in Oil-Water Flow in Inclined Pipeline

Rashedi, Ahmadreza 22 July 2016 (has links)
No description available.
232

Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

Hope, Adam T., Hope 30 August 2016 (has links)
No description available.
233

Effect of Corrosion Inhibitor on Water Wetting and Carbon Dioxide Corrosion in Oil-Water Two-Phase Flow

Li, Chong 10 August 2009 (has links)
No description available.
234

Effect of Surface State on Water Wetting and Carbon Dioxide Corrosion in Oil-water Two-phase Flow

Tang, Xuanping 26 July 2011 (has links)
No description available.
235

The Antibacterial Activity of Silicone-Polyether Surfactants

Khan, Madiha F. January 2017 (has links)
The increase in microbial resistance to antibiotics underscores the need for novel antibacterial surfaces, particularly for silicone-based implants, because the hydrophobicity of silicones has been linked to undesirable microbial adhesion and biofilm formation. Unfortunately, current strategies for mitigation, such as pretreatment of surfaces with antiseptics/antibiotics, are not consistently effective. In fact, they can facilitate the prevalence of resistant pathogens by exposing bacteria to sublethal concentrations of biocides. Therefore, scientific interest has shifted to preventing initial adhesion (prior to surface colonization) by using surfactants as surface modifiers. Accordingly, Chapter 2 studied the bioactivity of ACR-008 UP (an acrylic-terminated superwetting silicone surfactant) after it was copolymerized in increasing weight percentages with butyl methacrylate (BMA) and/or methyl methacrylate (MMA). Interestingly, copolymers of 20 wt % ACR showed at least 3x less adhesion by Escherichia coli BL21 (E. coli) than any other formulation. This was not a consequence of wettability, which followed a parabolic function with ACR concentration: high contact angles (CA) with sessile water drops were observed at both low (< 20 wt %) and high (> 80 wt %) concentrations of ACR in materials. The CA at 20 wt % ACR was 66°. The lack of E. coli adhesion was ascribed to surfactant-membrane interactions; hence, the antibacterial potential of compounds related to ACR was further probed. Chapter 3, therefore, examines the structure-activity relationships of nonionic silicone polyether surfactants in solution. Azide/alkyne click chemistry was used to prepare a series of eight compounds with consistent hydrophilic tails (8- 44 poly(ethylene glycol) units), but variable hydrophobic heads (branched silicones with 3-10 siloxane linkages, and in two cases phenyl substitutions). The compounds were tested for toxicity at 0.001 w/v %, 2.5 w/v % and their critical micelle concentrations (CMCs), against different concentrations of E. coli in a 3-step assay. Surfactants with smaller head groups had as much as 4x the bioactivity of larger analogues, with the smallest hydrophobe exhibiting potency equivalent to SDS. Smaller PEG chains were similarly associated with higher potency. This data suggests that lower micelle stability, and the theoretically enhanced permeability of smaller silicone head groups in membranes, is linked to antibacterial activity. The results further demonstrate that the simple manipulation of nonionic silicone polyether structures, leads to significant changes in antibacterial action. To ensure similar results were achievable when such surfactants are immobilized on surfaces, 8 compounds with shorter, ethoxysilylpropyl-terminated PEG chains, and branched or linear hydrophobes, were incorporated into a homemade, room temperature vulcanization (RTV) silicone (Chapter 4). The materials, containing 0- 20 wt% surfactants) were then tested for contact killing and cytophobicity against the same E. coli strain. Elastomers modified with 0.5- 1 wt% of (EtO)3Si-PEG- laurate, and separately (EtO)3Si-PEG-tBS, were on average 2x more hydrophilic relative to controls (103°) and differed in their wettability by ~40°, yet both were anti-adhesive; a ~30-fold reduction in adhesion was seen on modified surfaces relative to the control PDMS. Additionally, the (EtO)3Si-PEG-tBS surface demonstrated biocidal behavior, which further highlighted the importance of surfactant chemistry- not just wettability- in observing a specific antibacterial response (if any). Based on the data collated from each Chapter, silicone surfactants seem to have great potential as bioactive agents and warrant further systematic investigations into their mechanisms of action. In so doing, their chemistry may be optimized against different microbes for a variety of applications. In particular, their potential to create non-toxic, cytophobic silicones is particularly encouraging, given the need for anti-adhesive, biofilm preventing material surfaces. / Thesis / Doctor of Philosophy (PhD)
236

Analysis of Interfacial Processes on Non-Wetting Surfaces

Hatte, Sandeep Shankarrao 04 October 2022 (has links)
Non-wetting surfaces mainly categorized into superhydrophobic (SHS), lubricant-infused (LIS) and solid-infused surfaces (SIS), by virtue of their superior water repellant properties have wide applications in several energy and environmental systems. In this dissertation, the role of non-wetting surfaces toward the enhancement of condensation effectiveness is analyzed by taking into consideration the tube side and shell side individual interfacial energy transport processes namely, drag reduction, convection heat transfer enhancement, fouling mitigation and dropwise condensation heat transfer. First, an analytical solution is developed for effective slip length and, in turn, drag reduction and friction factor on structured non-wetting surfaces. Secondly, by combining the solution for effective slip length on structured non-wetting surfaces and the fractal characterization of generic multiscale rough surfaces, a theoretical analysis of drag reduction, friction factor, and convection heat transfer enhancement is conducted for scalable non-wetting surfaces. Next, fractal representation of rough surfaces is used to theoretical derive the dropwise condensation heat transfer performance on SHS and novel SIS surfaces. The aspect of dynamic fouling mitigation properties of non-wetting surfaces is explored by conducting systematic experiments. Using Taguchi design of experiments, this work for the first time presents a closed formed relationship of fouling mitigation quantified in terms of asymptotic fouling resistance with Reynolds number, foulant concentration and viscosity of the infusion material that represents the different surface types in a unified manner. Furthermore, it was observed that LIS and SIS offer excellent fouling mitigation compared to SHS and conventional smooth surfaces, however only SIS owing to the presence of solid-like infusion materials is observed to be robust for practical applications. / Doctor of Philosophy / Inspired by the naturally occurring water repellant lotus leaf and pitcher plant, metallic surfaces have undergone engineering modifications to their native wetting properties. By generating roughness features ranging from nanometer to micrometer length scales, subjecting them to low surface energy treatments and by choosing an appropriate water repellant infusion material, the water repellant properties seen on lotus leaf and pitcher plant can be engineered. Such water repellant (non-wetting) surface fabrication methods are widely available in the literature however very few are scalable to surface types (e.g. copper, aluminum etc.), surface size (millimeters to meters) and shape (plain, curved, inside of tubes etc.). In this work, considering scalable fabrication methods such as electrodeposition and chemical etching, a systematic analysis is conducted on enhancement of four interfacial processes that are a part of many industrial applications. First, the extent of water repellency by structured non-wetting surfaces for the flow of fluid (water) quantified in terms of effective slip length of flow is analytically derived. Using this theory and a self-similar (fractal) nature of the more generic rough surface designs, a theoretical analysis into the drag reduction, convection heat transfer enhancement on non-wetting surfaces is conducted. Next, using the fractal nature of the rough superhydrophobic surfaces (SHS) a theoretical investigation into dropwise condensation performance is used to derive bounds on condensation heat transfer enhancement. Through systematic experimental investigations, it is shown that a solid-infused surface (SIS) and lubricant-infused surfaces (LIS) which, respectively, incorporate a polymer and a slippery lubricant in the interstitial region of metallic asperities, exhibit superior dynamic mineral fouling mitigation performance compared to SHS and conventional smooth surfaces. In addition, it is demonstrated that SIS is a far robust and durable choice when compared to LIS for use in the long run.
237

Studies on Corrosion, Fouling and Durability of Advanced Functional Nonwetting Surfaces

Mousavi, Seyed Mohammad Ali 30 November 2021 (has links)
Superhydrophobic and lubricant-infused porous surfaces are two classes of non-wetting surfaces that are inspired by the adaptation of natural surfaces such as lotus leaves, pond skater legs, butterfly wings, and Nepenthes pitcher plant. This dissertation focuses on fabrication and in depth study of bioinspired functional metallic surfaces for applications such as power plant condensers and marine applications. Toward that, first, facile and scalable methods are developed for the fabrication of superhydrophobic surfaces (SHS) and lubricant-infused surfaces (LIS). Second, the corrosion inhibition mechanism of SHS was systematically studied and modeled via electrochemical methods to elucidate the role of superhydrophobicity and other parameters on corrosion inhibition. The anti-corrosion properties of SHS and LIS were systematically studied over a range of temperatures (23°C–90°C) to simulate an actual condenser environment. Moreover, the environment of application often involves using harsh cleaning chemicals. The fabricated non-wetting surfaces were examined over a wide range of acidity and basicity (pH=1 to pH=14). Third, the durability of SHS and LIS is systematically assessed using a set of testing protocols including water impingement tests, scratch wear tests, and accelerated chemical corrosion tests. Considering that industrial environments of application are often turbulent, in addition to static long term corrosion tests, long term dynamic durability was studied in a simulated turbulent condition. Fourth, the performance of the fabricated nonwetting surfaces was systematically studied against calcium sulfate scaling in turbulent conditions and different temperatures. An analytical relationship based on the Hill-Langmuir model is proposed for the prediction of fouling on nonwetting and conventional surfaces alike in dynamic conditions. Overall 1048 individual samples were studied via over 3000 measurements in this dissertation to establish a comprehensive fundamental knowledge base on fabrication and anti fouling characteristics of metallic nonwetting surfaces, which profoundly helps to design appropriate surfaces and fabrication methods based on the use environment. / Doctor of Philosophy / Metallic surfaces such as copper, brass, and aluminum are everywhere in our daily lives. From tumblers, household pipes to the bank of tubes in power plants condensers. Fouling of these surfaces has significant performance and economic impact. Scaling is a type of crystallization fouling like the familiar limescale everyone is familiar to see around the surface of a house kettle. Corrosion is another type of fouling and is detrimental to metallic surfaces. For example, 50% of water consumption in the U.S. is being used in thermo-electric power plants where fouling of metallic surfaces will impede the flow of working fluid, therefore increasing power needed for pumping, decrease efficiency, and decrease ultimate lifetime. One study in 2019 shows corrosion costs 3% of the gross national products of China and it is already known to be similar for other major economies like the USA, which is a hefty cost. Nature has inspired a lot of solutions for mankind. In this work, inspired by natural surfaces such as lotus leaves, butterfly wings, and pond skater legs, a class of superhydrophobic surfaces (SHS) was fabricated. Moreover, a closer look at how the complex human body puts everything in order exposes one of its most striking and essential characteristics: how wet and lubricated its interfaces are. Our lungs, eyes, joints, intestine, bones; either hairy or porous, all are lined wet surfaces that work as fouling inhibitors and defect free surfaces. This also have been observed elsewhere such as on Nepenthes pitcher plant. Inspired by these, another class of non-wetting surfaces, lubricant-infused surfaces (LIS) was fabricated. This dissertation for the first time investigates a rational methodology in the fabrication of metallic SHS and LIS and their anti-scaling and anti-corrosion properties in different environments of application, including a range of temperature (23°Câ€"90°C), various solutions (pH=1 to pH=14), and long-term static and dynamic (turbulent condition) durability. It is believed that this work would profoundly help to identify appropriate nonwetting metallic surfaces based on the intended use environment.
238

Influence of surface tension and concentration of a non-ionic surfactant on the barrier effectiveness of a microporous polypropylene fabric for pesticide protective clothing

Padki, Santosh Shankar 22 August 2008 (has links)
This research evaluated the influence of concentration and surface tension (γ) of aqueous solutions of a non-ionic surfactant on the barrier effectiveness of a fabric containing microporous polypropylene (PP) film that may be used in pesticide protective clothing (PPC). Aqueous solutions of Triton® X-100, a non-ionic surfactant, at various concentrations were prepared, and the γ of each solution was determined. The immediate advancing contact angles (θ), made by a 5-<i>μ</i>L drop of each test liquid on the test fabric, were measured. Barrier effectiveness was evaluated from the capillary penetration, wicking, and wetting characteristics of the fabric using the surfactant solutions at various concentrations. Wetting characteristics were evaluated from the drop absorbency test, a modified Draves test, the spreading coefficient (S<sub>c</sub>) values and, by inference, from a Zisman plot. As surfactant concentration increased, γ decreased, and then remained relatively steady past the 0.0134 percent concentration level, the critical micelle concentration (CMC) of Triton® X-100. As Triton® X-100 concentration increased, θ decreased, even past the CMC. Results of the study indicate that, as surfactant concentration increases, the amount of capillary penetration and the wicking distance increase even past the CMC. The time for drop absorbency and the Draves wetting tests were very high (> 600 seconds) for all liquids below CMC. Beyond the CMC, drop absorbency times were significantly lower for solutions of 2.0 and 5.0 percent concentration, and the Draves wetting times were also significantly lower. The values of the cos θ and the γ were used to calculate the S<sub>c</sub> for each liquid. The calculated spreading coefficients indicate that the liquids at all concentrations did not spread (wet) on the micro-porous PP test fabric for the advancing θ measured within 10 seconds of placing the drop. Results of the statistical analysis showed that surfactant concentration was a significant factor in determining the barrier effectiveness of the fabric tested. Even though γ remained relatively unchanged beyond the CMC of the surfactant, the inability of the test fabric to serve as an effective barrier against liquid penetration by capillary action, wicking, and wetting increased significantly. Surface energy terms, that are normally used to explain liquid transport and wetting phenomena, may not in themselves be sufficient to determine the effectiveness of a fabric for PPC, especially since concentration of the surfactant, a pesticide adjuvant, is a significant factor in determining the barrier effectiveness of PPC. Consideration must be made for the fact that very high concentrations of surfactants are routinely used in pesticide application. / Master of Science
239

Surface Forces in Thin Liquid Films of H-Bonding Liquids Confined between Hydrophobic Surfaces

Xia, Zhenbo 30 November 2015 (has links)
Hydrophobic interaction plays an important role in biology, daily lives, and a variety of industrial processes such as flotation. While the mechanisms of hydrophobic interactions at molecular scale, as in self-assembly and micellization, is relatively well understood, the mechanisms of macroscopic hydrophobic interactions have been controversial. It is, therefore, the objective of the present work to study the mechanisms of interactions between macroscopic hydrophobic surfaces in H-bonding liquids, including water, ethanol, and water-ethanol mixtures. The first part of the present study involves the measurement of the hydrophobic forces in the thin liquid films (TLFs) confined between two identical hydrophobic surfaces of contact angle 95.3o using an atomic force microscope (AFM). The measurements are conducted in pure water, pure ethanol, and ethanol-water mixtures of varying mole fractions. The results show that strong attractive forces, not considered in the classical DLVO theory, are present in the colloid films formed with all of the H-bonding liquids tested. When an H-bonding liquid is confined between two hydrophobic surfaces, the vicinal liquid molecules form clusters in the TLFs and give rise to an attractive force. The cluster formation is a way to minimize free energy for the molecules denied of H-bonding with the substrates. Thus, solvophobic forces are the result of the antipathy between the CH2- and CH3-coated surface and H-bonding liquid confined in the film. A thermodynamic analysis of the solvophobic forces measured at different temperatures support this mechanism, in which solvophobic interactions entail decreases in the excess film enthalpy and entropy. The former represents the energy gained by building clusters, while the latter represents loss of entropy due to structure building. Thus, hydrophobic interaction may be a subset of solvophobic interaction. The solvophobic forces are strongest in pure water and pure ethanol, and decrease when one is added to the other. Adding a very small amount of ethanol to water sharply reduced the solvophobic force due to the adsorption of the former with an inverse orientation. An exposure of the OH-group toward the aqueous phase decreases the antipathy between the surface and H-bonding liquid and hence causes the hydrophobic (or solvophobic) forces to decrease. The second part of the study involves the measurement of the hydrophobic forces in the wetting films of water using the force apparatus for deformable surfaces (FADS). This new instrument recently developed at Virginia Tech is designed to monitor the deformation of bubbles to determine the surface forces in wetting films. In effect, an air bubble is used a force sensor. The measurements have been conducted with gold, chalcopyrite, and galena as substrates. The results obtained with all three minerals show that hydrophobic force increases with increasing water contact angle, suggesting that hydrophobic forces are inherent properties of hydrophobic surfaces rather than created from artifacts such as preexisting nanobubbles and/or cavitation. A utility of the intrinsic relationship between hydrophobic force and contact angle is to predict flotation kinetics from the hydrophobicity of the minerals of interest. / Ph. D.
240

Surface and Hydrodynamic Forces in Wetting Films

Pan, Lei 27 August 2013 (has links)
The process of froth flotation relies on using air bubbles to collect desired mineral particles dispersed in aqueous media on the surface, while leaving undesirous mineral particles behind. For a particle to be collected on the surface of a bubble, the thin liquid films (or wetting films) of water formed in between must rupture. According to the Frumkin-Derjaguin isotherm, it is necessary that wetting films can rupture when the disjoining pressures are negative. However, the negative disjoining pressures are difficult to measure due to the instability and short lifetimes of the films. In the present work, two new methods of determining negative disjoining pressures have been developed. One is to use the modified thin film pressure balance (TFPB) technique, and the other is to directly determine the interaction forces using the force apparatus for deformable surfaces (FADS) developed in the present work. The former is designed to obtain spatiotemporal profiles of unstable wetting films by recording the optical interference patterns. The kinetic information derived from the spatiotemporal profiles were then used to determine the disjoining pressures using an analytical expression derived in the present work on the basis of the Reynolds lubrication theory. The technique has been used to study the effects of surface hydrophobicity, electrolyte (Al3+ ions) concentration, and bubble size on the stability of wetting films. Further, the geometric mean combining rule has been tested to see if the disjoining pressures of the wetting films can be predicted from the disjoining pressures of the colloid films formed between two hydrophobic surfaces and the disjoining pressures of the foam films formed between two air bubbles. The FADS is capable of directly measuring the interaction forces between air bubble and solid surface, and simultaneously monitoring the bubble deformation. The results were analyzed using the Reynolds lubrication theory and the extended DLVO theory to determine both the hydrodynamic and disjoining pressures. The FADS was used to study the effects of surface hydrophobicity and approach speeds. The results show that hydrophobic force is the major driving force for the bubble-particle interactions occurring in flotation. / Ph. D.

Page generated in 0.0461 seconds