Spelling suggestions: "subject:"whangaehu"" "subject:"kangaeru""
1 |
Depositional record of historic lahars in the Whangaehu Gorge, Mt. RuapehuGraettinger, Alison Hollomon January 2008 (has links)
Mt. Ruapehu is one of the most lahar prone volcanoes in the world, having both a crater lake and six small glaciers upon its 2797 m summit. The major outlet for the crater lake, the Whangaehu Gorge, has hosted over 46 historic lahars. However, the low preservation of debris flow deposits, as a result of frequent remobilisation on steep slopes, allows for the detailed description of only 9 lahar events over the last 150 years. Field investigation, historic aerial photos, two airborne LiDAR surveys and direct measurements have been utilised to describe the sedimentology, geomorphology and distribution of historic lahar deposits in the first 11 km of the Whangaehu Gorge. Inundation maps have been created for 1945, 1953, 1975, September 1995, October 1995, March 2007 and September 2007. Grain size distribution, componentry and geomorphology of the 1861, 1975, September 1995, October 1995, 1999 and 2007 lahar deposits have been compared. The lahar deposits are massive, very poorly sorted, silty gravels that form a series of unconsolidated terraces. The limited sediment sources in the steep sided Whangaehu Gorge, including minor historic eruption products, results in significant recycling of lahar deposits. However, the deposits can be differentiated by proportions of lithological components and in some cases anthropogenic debris. The abundance of hydrothermally altered material reflects the role of Crater Lake in lahar formation, although, some of these materials (gypsum, sulphur and snow) are only temporary. Non-cohesive debris flows and occasional snow slurry lahars have been formed by a range of triggering mechanisms associated with and independent of eruptions. Lahars have been formed in the Whangaehu Valley as the result of ejected crater lake water and associated snow melt (1975, September 1995 and September 2007), as well as the progressive displacement of lake water as a result of lava dome growth (1945) and uplift of the lake floor (1968). Inter-eruption lahars occur as a result of Crater Lake outburst floods (1861, 1953 and March 2007) and remobilisation by precipitation and the collapse of tephra laden snow (October 1995 and 1999). The comparison of historic lahars also reflects the range of lahar magnitudes experienced historically on Ruapehu. The most recent Crater Lake outburst of March 2007, with a peak discharge of 1700-2500 m3/s is the second largest recorded lahar, behind only the eruption-generated lahar of April 1975 with a peak discharge of 5000-7500 m3/s. Lahar mitigation can subsequently be based on lahar generation and incorporation of the vast amounts of data collected before and after the 2007 outburst flood. Recent remobilisation and phreatic activity suggest the significant under-representation of small volume events like rain-generated and snow slurry lahars in the geologic record.
|
Page generated in 0.0367 seconds