• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 12
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vulnerability Assessment and Risk Mitigation: The Case of Vulcano Island, Italy

Galderisi, Adriana, Bonadonna, Costanza, Delmonaco, Giuseppe, Ferrara, Floriana Federica, Menoni, Scira, Ceudech, Andrea, Biass, Sebastien, Frischknecht, Corine, Manzella, Irene, Minucci, Guido, Gregg, Chris 01 January 2013 (has links)
This paper reports on a comprehensive vulnerability analysis based on a research work developed within the EC ENSURE Project (7FP) dealing with the assessment of different volcanic phenomena and induced mass-movements on Vulcano Island (S Italy) as a key tool for proactive efforts for multi-risk mitigation. The work is mainly focused on tephra sedimentation and lahar hazards and related physical, systemic and mitigation capacities.
2

Vulnerability Assessment and Risk Mitigation: The Case of Vulcano Island, Italy

Galderisi, Adriana, Bonadonna, Costanza, Delmonaco, Giuseppe, Ferrara, Floriana Federica, Menoni, Scira, Ceudech, Andrea, Biass, Sebastien, Frischknecht, Corine, Manzella, Irene, Minucci, Guido, Gregg, Chris 01 January 2013 (has links)
This paper reports on a comprehensive vulnerability analysis based on a research work developed within the EC ENSURE Project (7FP) dealing with the assessment of different volcanic phenomena and induced mass-movements on Vulcano Island (S Italy) as a key tool for proactive efforts for multi-risk mitigation. The work is mainly focused on tephra sedimentation and lahar hazards and related physical, systemic and mitigation capacities.
3

Depositional record of historic lahars in the Whangaehu Gorge, Mt. Ruapehu

Graettinger, Alison Hollomon January 2008 (has links)
Mt. Ruapehu is one of the most lahar prone volcanoes in the world, having both a crater lake and six small glaciers upon its 2797 m summit. The major outlet for the crater lake, the Whangaehu Gorge, has hosted over 46 historic lahars. However, the low preservation of debris flow deposits, as a result of frequent remobilisation on steep slopes, allows for the detailed description of only 9 lahar events over the last 150 years. Field investigation, historic aerial photos, two airborne LiDAR surveys and direct measurements have been utilised to describe the sedimentology, geomorphology and distribution of historic lahar deposits in the first 11 km of the Whangaehu Gorge. Inundation maps have been created for 1945, 1953, 1975, September 1995, October 1995, March 2007 and September 2007. Grain size distribution, componentry and geomorphology of the 1861, 1975, September 1995, October 1995, 1999 and 2007 lahar deposits have been compared. The lahar deposits are massive, very poorly sorted, silty gravels that form a series of unconsolidated terraces. The limited sediment sources in the steep sided Whangaehu Gorge, including minor historic eruption products, results in significant recycling of lahar deposits. However, the deposits can be differentiated by proportions of lithological components and in some cases anthropogenic debris. The abundance of hydrothermally altered material reflects the role of Crater Lake in lahar formation, although, some of these materials (gypsum, sulphur and snow) are only temporary. Non-cohesive debris flows and occasional snow slurry lahars have been formed by a range of triggering mechanisms associated with and independent of eruptions. Lahars have been formed in the Whangaehu Valley as the result of ejected crater lake water and associated snow melt (1975, September 1995 and September 2007), as well as the progressive displacement of lake water as a result of lava dome growth (1945) and uplift of the lake floor (1968). Inter-eruption lahars occur as a result of Crater Lake outburst floods (1861, 1953 and March 2007) and remobilisation by precipitation and the collapse of tephra laden snow (October 1995 and 1999). The comparison of historic lahars also reflects the range of lahar magnitudes experienced historically on Ruapehu. The most recent Crater Lake outburst of March 2007, with a peak discharge of 1700-2500 m3/s is the second largest recorded lahar, behind only the eruption-generated lahar of April 1975 with a peak discharge of 5000-7500 m3/s. Lahar mitigation can subsequently be based on lahar generation and incorporation of the vast amounts of data collected before and after the 2007 outburst flood. Recent remobilisation and phreatic activity suggest the significant under-representation of small volume events like rain-generated and snow slurry lahars in the geologic record.
4

Depositional record of historic lahars in the Whangaehu Gorge, Mt. Ruapehu

Graettinger, Alison Hollomon. January 2008 (has links)
Thesis (M.Sc. Earth and Ocean Science)--University of Waikato, 2008. / Title from PDF cover (viewed August 26, 2008) Includes bibliographical references (p. 169-177)
5

Volcanic Influence over Fluvial Sedimentation in the Cretaceous Mcdermott Member, Animas Formation, Southwestern Colorado

O'Shea, Colleen Rachael 29 July 2009 (has links)
No description available.
6

Sedimentologic Changes in the Deposits of an Evolving Lahar-Flood in 2006, Hood River Basin, Mount Hood, Oregon

Poole, Matthew Ray 01 December 2016 (has links)
Over a span of six days from November 2-7, 2006 approximately 43 cm of precipitation fell over the Hood River Basin in Oregon. A lahar was initiated on the Eliot Branch of the Middle Fork Hood River by two or more landslides that occurred on the lateral moraines of the Eliot Glacier on the early part of November 7th, 2006. The Eliot Branch lahar was embedded within the larger regional flood that was occurring in the Hood River Basin and traveled a total of 48 km from the initiation points on the north flank of Mount Hood to the Hood Rivers confluence with the Columbia River. The initiating landslides abruptly transformed into a debris flow upon mixing with flood waters of the Eliot Branch. The debris flow traveled a distance of ~28 km at which point it was transformed first to a hyperconcentrated flow and then to water flow via selective deposition of coarse sediment and progressive dilution by channel flow waters from the East and West Fork Hood Rivers. The transformation from debris flow to hyperconcentrated streamflow was recorded by a thickening wedge of hyperconcentrated streamflow sediments found above and below progressively fining debris flow sediments over a reach of 22 km. Finally, the hyperconcentrated-flow phase of the lahar transformed to water flow and then traveled an additional 20 km to the Hood River delta. Upon reaching the apex of the Hood River delta, depositing sediments led to an expansion of the delta. Debris-flow sediments were predominantly gravel (36.0-69.7% by wt.) with sand (22.1-55.9% by wt.) and fines (4.7-7.8% by wt.). Hyperconcentrated flow deposits contained a larger sand fraction of (66.8-99.2% by wt.) with few gravel clasts (0-26.0% by wt.) and fines (0-8.8% by wt.). Water flow deposits averaged 90.5% (wt.) sand with 6.0% (wt.) gravel and 3.0% (wt.) fines. Sorting was a key factor in flow identification and showed progressive improvement downstream from the initiation point. Sorting values for the flow types are as follows: debris flow deposits ranged from 3.3Φ (very poorly sorted) to 1.8Φ (poorly sorted), hyperconcentrated flow deposits ranged from 2.4Φ (very poorly sorted) to 0.8Φ (moderately sorted), and water flood deposits ranged between 1.4Φ (poorly sorted) to 0.6Φ (moderately sorted).
7

Lahar hazard mapping of Mount Shasta, California : A GIS-based delineation of potential inundation zones in Mud and Whitney Creek basins /

McClung, Steven C. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2006. / Printout. Includes bibliographical references (leaves 58-60). Also available online.
8

Debris Flow Susceptibility Map for Mount Rainier, Washington Based on Debris Flow Initiation Zone Characteristics from the November, 2006 Climate Event in the Cascade Mountains

Lindsey, Kassandra 29 December 2015 (has links)
In November 2006 a Pineapple Express rainstorm moved through the Pacific Northwest generating record precipitation, 22 to 50 cm in the two-day event on Mt. Rainier. Copeland (2009) and Legg (2013) identified debris flows in seven drainages in 2006; Inter Fork, Kautz, Ohanapecosh, Pyramid, Tahoma, Van Trump, and West Fork of the White River. This study identified seven more drainages: Carbon, Fryingpan, Muddy Fork Cowlitz, North Puyallup, South Mowich, South Puyallup, and White Rivers. Twenty-nine characteristics, or attributes, associated with the drainages around the mountain were collected. Thirteen were used in a regression analysis in order to develop a susceptibility map for debris flows on Mt. Rainier: Percent vegetation, percent steep slopes, gradient, Melton's Ruggedness Number, height, area, percent bedrock, percent surficial, percent glacier, stream has direct connection with a glacier, average annual precipitation, event precipitation, and peak precipitation. All variables used in the regression were measured in the upper basin. Two models, both with 91% accuracy, were generated for the mountain. Model 1 determined gradient of the upper basin, upper basin area, and percent bedrock to be the most significant variables. This model predicted 10 drainages with high potential for failure: Carbon, Fryingpan, Kautz, Nisqually, North Mowich, South Mowich, South Puyallup, Tahoma, West Fork of the White, and White Rivers. Of the remaining drainages 5 are moderate, 10 are low, and 9 are very low. Model 2 found MRN (Melton's Ruggedness Number) and percent bedrock to be the most significant. This model predicted 10 drainages with high potential for failure during future similar events: Fryingpan, Kautz, Nisqually, North Mowich, Pyramid, South Mowich, South Puyallup, Tahoma, Van Trump, and White Rivers. Of the remaining drainages, 6 are moderate, 9 are low, and 9 are very low. The two models are very similar. Initiation site elevations range from 1442 m to 2448 m. Six of the thirteen initiation sites are above 2000 m. Proglacial gully erosion initiated debris flows seem to occur at all elevations. Those debris flows initiated partially by landslides occur between 1400 and about 1800 m. The combined regression analysis model for the Mt. Rainier, Mt. St. Helens, Mt. Hood, and Mt. Adams raised the predictive accuracy from 69% (Olson, 2012) to 77%. This model determined that percent glacier/ice and percent vegetation were the most significant.
9

Assessing and improving the effectiveness of staff training and warning system response at Whakapapa and Turoa ski areas, Mt. Ruapehu.

Christianson, Amy Nadine January 2006 (has links)
Ruapehu is an active volcano located on the North Island of New Zealand, with the most recent major eruptions occurring in 1945, 1969, 1975, and 1995/96. Ruapehu is also home to the three major North Island ski areas, Whakapapa, Turoa, and Tukino. Because of the high frequency of eruptions, there is a significant volcanic hazard at the ski areas particularly from lahars which can form even after minor eruptions. Most recently, lahars have affected Whakapapa ski area in 1969, 1975, and 1995/96. The most significant risk at Turoa is from ballistic bombs due to the proximity of the top two T-Bars to the crater. Ash fall has also caused disruption at the ski areas, covering the snow and causing damage to structures. There is yet to be a death at the ski areas from a volcanic event; however the risk at the ski areas is too high to be completely ignored. The ski areas at Whakapapa and Turoa are currently operated by Ruapehu Alpine Lifts (RAL), who have been significantly improving their commitment to providing volcanic hazard training for their staff and preparing for handling a volcanic eruption. RAL is joined by the Institute of Geological Sciences (GNS) and the Department of Conservation (DoC) in trying to mitigate this risk through a range of initiatives, including an automated Eruption Detection System (EDS), linked to sirens and loudspeakers on Whakapapa ski areas, as well as by providing staff training and public education. The aim of this study was to provide RAL with recommendations to improve their staff training and warning system response. Staff induction week at both Turoa and Whakapapa ski areas was observed. Surveys were distributed and collected from staff at both ski areas, and interviews were conducted with staff at Whakapapa ski area. Data obtained from staff interviews and surveys provided the author with insight into staff's mental models regarding a volcanic event response. A simulation of the warning system was observed, as well as a blind test, to collect data on the effectiveness of training on staff response. Results indicated permanent and seasonal staff were knowledgeable of the volcanic hazards that may affect the ski areas, but had differing perspectives on the risk associated with those hazards. They were found to be confident in the initial response to a volcanic event (i.e. move to higher ground), but were unsure of what would happen after this initial response. RAL was also found to have greatly improved their volcanic hazard training in the past year, however further recommendations were suggested to increase training effectiveness. A training needs analysis was done for different departments at the ski areas by taking a new approach of anticipating demands staff may encounter during a volcanic event and complementing these demands with existing staff competencies. Additional recommendations were made to assist RAL in developing an effective plan to use when responding to volcanic events, as well as other changes that could be made to improve the likelihood of customer safety at the ski areas during an eruption.
10

Assessing and improving the effectiveness of staff training and warning system response at Whakapapa and Turoa ski areas, Mt. Ruapehu.

Christianson, Amy Nadine January 2006 (has links)
Ruapehu is an active volcano located on the North Island of New Zealand, with the most recent major eruptions occurring in 1945, 1969, 1975, and 1995/96. Ruapehu is also home to the three major North Island ski areas, Whakapapa, Turoa, and Tukino. Because of the high frequency of eruptions, there is a significant volcanic hazard at the ski areas particularly from lahars which can form even after minor eruptions. Most recently, lahars have affected Whakapapa ski area in 1969, 1975, and 1995/96. The most significant risk at Turoa is from ballistic bombs due to the proximity of the top two T-Bars to the crater. Ash fall has also caused disruption at the ski areas, covering the snow and causing damage to structures. There is yet to be a death at the ski areas from a volcanic event; however the risk at the ski areas is too high to be completely ignored. The ski areas at Whakapapa and Turoa are currently operated by Ruapehu Alpine Lifts (RAL), who have been significantly improving their commitment to providing volcanic hazard training for their staff and preparing for handling a volcanic eruption. RAL is joined by the Institute of Geological Sciences (GNS) and the Department of Conservation (DoC) in trying to mitigate this risk through a range of initiatives, including an automated Eruption Detection System (EDS), linked to sirens and loudspeakers on Whakapapa ski areas, as well as by providing staff training and public education. The aim of this study was to provide RAL with recommendations to improve their staff training and warning system response. Staff induction week at both Turoa and Whakapapa ski areas was observed. Surveys were distributed and collected from staff at both ski areas, and interviews were conducted with staff at Whakapapa ski area. Data obtained from staff interviews and surveys provided the author with insight into staff's mental models regarding a volcanic event response. A simulation of the warning system was observed, as well as a blind test, to collect data on the effectiveness of training on staff response. Results indicated permanent and seasonal staff were knowledgeable of the volcanic hazards that may affect the ski areas, but had differing perspectives on the risk associated with those hazards. They were found to be confident in the initial response to a volcanic event (i.e. move to higher ground), but were unsure of what would happen after this initial response. RAL was also found to have greatly improved their volcanic hazard training in the past year, however further recommendations were suggested to increase training effectiveness. A training needs analysis was done for different departments at the ski areas by taking a new approach of anticipating demands staff may encounter during a volcanic event and complementing these demands with existing staff competencies. Additional recommendations were made to assist RAL in developing an effective plan to use when responding to volcanic events, as well as other changes that could be made to improve the likelihood of customer safety at the ski areas during an eruption.

Page generated in 0.0178 seconds