Spelling suggestions: "subject:"wheel 1mpact load detector"" "subject:"wheel 1mpact load etector""
1 |
DIRECT MEASUREMENT OF CROSSTIE-BALLAST INTERFACE PRESSURES USING GRANULAR MATERIAL PRESSURE CELLSWatts, Travis James 01 January 2018 (has links)
The magnitudes and relative pressure distributions transmitted to the crosstie-ballast interface of railroad track significantly influences the subsequent behavior and performance of the overall track structure. If the track structure is not properly designed to distribute the heavy-axle loads of freight cars and locomotives, deficiencies and inherent failures of the crossties, ballast, or underlying support layers can occur, requiring substantial and frequent maintenance activities to achieve requisite track geometrical standards. Incorporating an understanding of the pressure distribution at the crosstie-ballast interface, appropriate designs can be applied to adequately provide a high performing and long-lasting railroad track. Although this can be considered a simple concept, the magnitudes and distributions of pressures at the crosstie-ballast interface have historically proven to be difficult to quantifiably measure and assess over the years.
This document describes the development and application of a method to measure average railroad track crosstie-ballast interfacial pressures using timber crossties and pressure cells specifically designed for granular materials. A procedure was specifically developed for recessing the cells in the bottoms of timber crossties. The validity of the test method was initially verified with a series of laboratory tests. These tests used controlled loads applied to sections of trackbed constructed in specifically designed resilient frames. The prototype trackbed section was intended to simulate typical in-track loading conditions and ballast response.
Cells were subsequently installed at a test site on an NS Railway well-maintained mainline just east of Knoxville, TN. Six successive crossties were fitted with pressure cells at the ballast interface below the rail seat. Pressure cells were also installed at the center of two crossties where the ballast is typically not tamped or consolidated. Trackbed pressures at the crosstie-ballast interface were periodically measured for numerous revenue freight trains during a period of twenty-one months. After raising and surfacing the track, the ballast was permitted to further consolidate under normal train traffic before again measuring pressures. Having the ballast tightly and uniformly compacted under crossties is important to ensuring representative and reproducible pressure measurements.
Measured maximum pressures under the rail at the crosstie-ballast interface ranged from 20 to 30 psi (140 to 210 kPa) for locomotives and loaded freight cars with smooth wheels producing negligible wheel/rail impacts. Crosstie-ballast interface pressures were typically 3 psi (20 kPa) maximum for empty freight cars with smooth wheels. Heavily loaded articulated intermodal car pressures for shared trucks tended to reach nearly 40 psi (280 kPa), actually higher than locomotive-produced pressures. The recorded pressures under the center of the ties were normally negligible, less than 1 psi (7 kPa) for locomotives and loaded freight cars.
Wheel-Rail force parameters measured by nearby wheel-impact load detectors (WILD) were compared to crosstie-ballast pressure data for the same trains traversing the test site. Increases in peak WILD forces, either due to heavier wheel loads or increased impacts, were determined to relate favorably to increases in recorded trackbed pressures with a power relationship. The ratios between the peak and nominal wheel forces and trackbed pressures also have strong relationships.
|
2 |
The Effect of High Wheel Impact Load on the Rail Reliability - a Case Study at Bodsjön / Effekten av hög hjulpåverkan på järnvägens tillförlitlighet - en fallstudie i BodsjönDang, Ngoc Thúy Vy January 2021 (has links)
This study focuses on the reliability of railway track in the relation with high loads resulted from wheel damages, where higher (dynamic) vertical wheel loads are expected from trains with damaged wheels. The Swedish Transport Administration (Trafikverket) has monitored and recorded data of rail defects and breaks. This data is important for the risk evaluation and management process, in order to obtain a balance between the maintenance costs and availability and quality of service for the railway transportation. To detect wheel damages in advance, Wheel Impact Loads (WIL) are measured and recorded by Wheel Impact Load Detectors (WILD), which are installed along the Swedish railway network, currently at 29 locations. Additionally, to detect defects and breakages in rails, Ultrasonic Testing (UT) is a common non-destructive testing method used by Trafikverket. In this project, a case study is conducted to examine statistically the frequency of rail defects and rail breaks after trains with high WILs, which exceed 350 kN, continued to operate in a defined area during the winter of 2019/20 at Bodsjön. The case study compares the data of WILD at Bodsjön and UT of the nearby track sections, 211 and 212, over a period of five years, from 2016 to 2020. Rail reliability levels are examined based on the absolute frequencies of rail defects detected by UT and the normalised ones per kilometre of UT-checked track, as well as the severity levels of those rail defects. The severity levels are denoted from the highest to the lowest, as 1a/ 1v/ 1m, 2b and 3i, based on the derailment risks and the priority of maintenance. It is observed that the extremely high WILs in the winter 2019/2020 has coincided with the more severe rail defects found by the following UT in 2020. Furthermore, the dominant rail defect type is found as squats. By studying the frequency of squats and their locations along the defined track sections, it is shown that there is a similar trend in the frequencies of squats and the high WILs. While, the effect of the high WILs’ magnitudes onto the occurrence of squats is undefined. However, the correlation between the frequencies and magnitudes of high WILs and the rail reliability levels could not be determined from this case study due to the limitations in the data collections. The current way of data collections for WILs, wheel damage types and rail defects are discussed for future works. Lastly, the statistics shows that the level of rail reliability of the area defined in the case study is considered as acceptable, considering the recent national levels that have been reported in the annual reports on rail defects. This gives the basis for the possibility of reviewing the permissible power level and proposing a new alert limit value of WIL. Nevertheless, considering the recommendation of The International Union of Railways (UIC) for the international railway sections, the implementation of the increased alert limit of WIL shall be examined carefully, with a future pilot study in railway sections that are not used for international traffic. / Denna studie fokuserar på tillförlitligheten för järnvägsspår i samband med höga laster som orsakas av hjulskador, där högre (dynamiska) vertikala hjullaster förväntas från tåg med skadade hjul. Trafikverket har övervakat och registrerat data om järnvägsfel och avbrott. Dessa uppgifter är viktiga för riskutvärderingen och hanteringsprocessen för att få en balans mellan underhållskostnader och tillgänglighet och kvalitet på järnvägstransportens kvalitet. För att upptäcka hjulskador i förväg, mäts och registreras Wheel Impact Loads (WIL) av Wheel Impact Load Detectors (WILD), som är installerade längs det svenska järnvägsnätet, för närvarande på 29 platser. För att upptäcka defekter och brott i skenor är Ultrasonic Testing (UT) en vanlig icke-destruktiv testmetod som används av Trafikverket.I det här projektet, genomförs en fallstudie för att statistiskt undersöka frekvensen av järnvägsdefekter och rälsavbrott efter tåg med höga WILs, som överstiger 350 kN, fortsatte att köra i ett definierat område under vintern 2019/20 vid Bodsjön. Fallstudien jämför data från WILD vid Bodsjön och UT för de närliggande spåravsnitten, 211 och 212, under en period på fem år, från 2016 till 2020. Järnvägssäkerhetsnivåer undersöks baserat på de absoluta frekvenserna av järnvägsdefekter som upptäcks av UT och de normaliserade per kilometer UT-kontrollerat spår, liksom svårighetsgraden av dessa järnvägsdefekter. Svårighetsgraderna anges från det högsta till det lägsta, som 1a/ 1v/ 1m, 2b och 3i, baserat på urspårningsriskerna och underhållets prioritet.Det observeras att de extremt höga WILs under vintern 2019/2020 har sammanfallit med de allvarligare järnvägsdefekterna som hittades av följande UT år 2020. Vidare återfinns den dominerande järnvägstypstypen som knäböj. Genom att studera frekvensen av knäböj och deras platser längs ett definierat spåravsnitt, visas det att det finns en liknande trend i frekvenserna för knäböj och de höga WILs. Medan effekten av de höga WILs storheter på förekomsten av knäböj är odefinierad. Korrelationen mellan frekvenserna och storheterna för höga WILs och järnvägssäkerhetsnivåerna kunde dock inte fastställas från denna fallstudie på grund av begränsningarna i datasamlingarna. Det nuvarande sättet för datainsamling för WILs, hjulskadetyper och järnvägsdefekter diskuteras för framtida arbeten.Slutligen visar statistiken att nivån på järnvägstillförlitlighet för det område som definieras i fallstudien anses vara acceptabel, med tanke på de senaste nationella nivåerna som har rapporterats i de årliga rapporterna om järnvägsdefekter. Detta ger grunden för möjligheten att granska den tillåtna effektnivån och föreslå ett nytt varningsgränsvärde för WIL. Med tanke på rekommendationen från The International Union of Railways (UIC) för de internationella järnvägssektionerna, ska genomförandet av den ökade varningsgränsen för WIL undersökas noggrant, med en framtida pilotstudie i järnvägssektioner som inte används för internationell trafik.
|
Page generated in 0.0713 seconds