• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Financial Modelling Using Fractional Processes And The Wiener Chaos Expansion / Undersökning Av Finasiella Modeller Med Fraktionella Processer Och Wiener's Kaosexpansion

Hummelgren, Olof January 2022 (has links)
The aim of this thesis is to simulate stochastic models that are driven by a fractional Brownian motion process and to apply these methods to financial applications related to yield rate and asset price modelling. Several rough volatility processes are used to model the asset price and yield dynamics. Firstly fractional processes of Cox-Ingersoll-Ross, CEV and Vasicek types are introduced as models for volatility and yield data. In this framework it holds that the Hurst parameter that determines the covariance structure of the fBM process can be directly estimated from observed data series using a least squares log-periodogram approach. The remaining parameters in the model are estimated using a combination of Maximum Likelihood estimates and expectation estimations. In the modelling and pricing of assets one model that is studied is the fractional Heston model, that is used to model an asset price process using both observed asset and volatility data. Similarly two other similar rough volatility models are also studied, which are constructed so as to have log-Normal returns. These processes which in the thesis are called the exponential models 1 and 2 have rough volatility that are characterized by the CEV and Vasicek processes. Additionally the first order Wiener Chaos Expansion is implemented and explored in two ways. Firstly the Chaos Expansion is applied to a parametric fractional stochastic model which is used to generate a Wick product process, which is found to resemble the underlying process. It is also used to generate an approximate expansion of real yield rate data using a bootstrap sampling approach. / Den här uppsatsen syftar till att simulera stokastiska modeller som drivs av fraktionell Brownsk rörelse och att använda dessa modeller i finansiella tillämpningar relaterade till räntor och finansiella tillgångar. Flera volatilitetsprocesser som är rough används för att modellera ränte- och aktiedynamiken. Först introduceras de fraktionella varianterna av Cox-Ingersoll-Ross, CEV och Vasicek processer, vilka används för att modellera volatilitet och ränteprocesser. Med detta tillvägagångssätt gäller det att Hurstparametern, vilken bestämmer covariansstrukturen för den fraktionella Brownska rörelsen, kan uppskattas direkt från observerad data med en minsta kvadrat log-periodogram-metod. Samtliga andra parametrar i modellen uppskattas med en kombination av Maximum Likelihood och uppskattning av väntevärden. I modelleringen och prissättningen av finansiella tillgångar är en model som studeras den fraktionella Hestonmodellen, som används för att modellera en tillgång baserat på både volatilitets- och aktiedata. Ytterligare två liknande modeller studeras, vilka också har volatilitet som är rough och är konstruerade så att deras avkastning är log-Normal. Dessa processer, vilka i uppsatsen är benämnda som de exponentiella modellerna 1 och 2 har volatilitet som karaktäriseras av CEV- och Vasicekprocesser. Ytterligare är Wiener's Kaosexpansion av första ordningen också implementerad och undersöks från två håll. Först används den på en parameterbestämd fraktionell stokastisk modell, vilken används för att generera en Wickproduktprocess. Expansionen används även med hjälp av en bootstrap-metod för att generera en process från observerad data.

Page generated in 0.0746 seconds