Spelling suggestions: "subject:"diener model"" "subject:"kiener model""
1 |
Detection and diagnostic of freeplay induced limit cycle oscillation in the flight control system of a civil aircraftUrbano, Simone 18 April 2019 (has links) (PDF)
This research study is the result of a 3 years CIFRE PhD thesis between the Airbus design office(Aircraft Control domain) and TéSA laboratory in Toulouse. The main goal is to propose, developand validate a software solution for the detection and diagnosis of a specific type of elevator andrudder vibration, called limit cycle oscillation (LCO), based on existing signals available in flightcontrol computers on board in-series aircraft. LCO is a generic mathematical term defining aninitial condition-independent periodic mode occurring in nonconservative nonlinear systems. Thisstudy focuses on the LCO phenomenon induced by mechanical freeplays in the control surface ofa civil aircraft. The LCO consequences are local structural load augmentation, flight handlingqualities deterioration, actuator operational life reduction, cockpit and cabin comfort deteriorationand maintenance cost augmentation. The state-of-the-art for freeplay induced LCO detection anddiagnosis is based on the pilot sensitivity to vibration and to periodic freeplay check on the controlsurfaces. This study is thought to propose a data-driven solution to help LCO and freeplaydiagnosis. The goal is to improve even more aircraft availability and reduce the maintenance costsby providing to the airlines a condition monitoring signal for LCO and freeplays. For this reason,two algorithmic solutions for vibration and freeplay diagnosis are investigated in this PhD thesis. Areal time detector for LCO diagnosis is first proposed based on the theory of the generalized likeli hood ratio test (GLRT). Some variants and simplifications are also proposed to be compliantwith the industrial constraints. In a second part of this work, a mechanical freeplay detector isintroduced based on the theory of Wiener model identification. Parametric (maximum likelihoodestimator) and non parametric (kernel regression) approaches are investigated, as well as somevariants to well-known nonparametric methods. In particular, the problem of hysteresis cycleestimation (as the output nonlinearity of a Wiener model) is tackled. Moreover, the constrainedand unconstrained problems are studied. A theoretical, numerical (simulator) and experimental(flight data and laboratory) analysis is carried out to investigate the performance of the proposeddetectors and to identify limitations and industrial feasibility. The obtained numerical andexperimental results confirm that the proposed GLR test (and its variants/simplifications) is a very appealing method for LCO diagnostic in terms of performance, robustness and computationalcost. On the other hand, the proposed freeplay diagnostic algorithm is able to detect relativelylarge freeplay levels, but it does not provide consistent results for relatively small freeplay levels. Moreover, specific input types are needed to guarantee repetitive and consistent results. Further studies should be carried out in order to compare the GLRT results with a Bayesian approach and to investigate more deeply the possibilities and limitations of the proposed parametric method for Wiener model identification.
|
2 |
Nonlinear Modeling and Feedback Control of Drug Delivery in AnesthesiaSilva, Margarida M. January 2014 (has links)
General anesthesia is a drug-induced reversible state where neuromuscular blockade (NMB), hypnosis, and analgesia (jointly denoted by depth of anesthesia - DoA) are guaranteed. This thesis concerns mathematical modeling and feedback control of the effect of the muscle relaxants atracurium and rocuronium, the hypnotic propofol, and the analgesic remifentanil. It is motivated by the need to reduce incidences of awareness and overdose-related post-operative complications that occur in standard clinical practice. A major challenge for identification in closed-loop is the poor excitation provided by the feedback signal. This applies to the case of drugs administered in closed-loop. As a result, the standard models for the effect of anesthetics appear to be over-parameterized. This deteriorates the result of system identification and prevents individualized control. In the first part of the thesis, minimally parameterized models for the single-input single-output NMB and the multiple-input single-output DoA are developed, using real data. The models have a nonlinear Wiener structure: linear time-invariant dynamics cascaded with a static nonlinearity. The proposed models are shown to improve identifiability as compared to the standard ones. The second part of the thesis presents system identification methods for Wiener systems: a batch prediction error method, and two recursive techniques, one based on the extended Kalman filter, and another based on the particle filter. Algorithms are given for both the NMB and the DoA using the minimally parameterized models. Nonlinear adaptive controllers are proposed in the third part of the thesis. Using the model parameter estimates from the extended Kalman filter, the controller performs an online inversion of the Wiener nonlinearity. A pole-placement controller or a linear quadratic Gaussian controller is used for the linearized system. Results show good reference tracking performance both in simulation and in real trials. Relating to patient safety, the existence of undesirable sustained oscillations as consequence of Andronov-Hopf bifurcations for a NMB PID-controlled system is analyzed. Essentially the same bifurcations are observed in the standard and the minimally parameterized models, confirming the ability of the latter to predict the nonlinear behavior of the closed-loop system. Methods to design oscillation-free controllers are outlined.
|
3 |
Nonlinear Approaches to Periodic Signal ModelingAbd-Elrady, Emad January 2005 (has links)
<p>Periodic signal modeling plays an important role in different fields. The unifying theme of this thesis is using nonlinear techniques to model periodic signals. The suggested techniques utilize the user pre-knowledge about the signal waveform. This gives these techniques an advantage as compared to others that do not consider such priors.</p><p>The technique of Part I relies on the fact that a sine wave that is passed through a static nonlinear function produces a harmonic spectrum of overtones. Consequently, the estimated signal model can be parameterized as a known periodic function (with unknown frequency) in cascade with an unknown static nonlinearity. The unknown frequency and the parameters of the static nonlinearity are estimated simultaneously using the recursive prediction error method (RPEM). A treatment of the local convergence properties of the RPEM is provided. Also, an adaptive grid point algorithm is introduced to estimate the unknown frequency and the parameters of the static nonlinearity in a number of adaptively estimated grid points. This gives the RPEM more freedom to select the grid points and hence reduces modeling errors.</p><p>Limit cycle oscillations problem are encountered in many applications. Therefore, mathematical modeling of limit cycles becomes an essential topic that helps to better understand and/or to avoid limit cycle oscillations in different fields. In Part II, a second-order nonlinear ODE is used to model the periodic signal as a limit cycle oscillation. The right hand side of the ODE model is parameterized using a polynomial function in the states, and then discretized to allow for the implementation of different identification algorithms. Hence, it is possible to obtain highly accurate models by only estimating a few parameters.</p><p>In Part III, different user aspects for the two nonlinear approaches of the thesis are discussed. Finally, topics for future research are presented. </p>
|
4 |
Nonlinear Approaches to Periodic Signal ModelingAbd-Elrady, Emad January 2005 (has links)
Periodic signal modeling plays an important role in different fields. The unifying theme of this thesis is using nonlinear techniques to model periodic signals. The suggested techniques utilize the user pre-knowledge about the signal waveform. This gives these techniques an advantage as compared to others that do not consider such priors. The technique of Part I relies on the fact that a sine wave that is passed through a static nonlinear function produces a harmonic spectrum of overtones. Consequently, the estimated signal model can be parameterized as a known periodic function (with unknown frequency) in cascade with an unknown static nonlinearity. The unknown frequency and the parameters of the static nonlinearity are estimated simultaneously using the recursive prediction error method (RPEM). A treatment of the local convergence properties of the RPEM is provided. Also, an adaptive grid point algorithm is introduced to estimate the unknown frequency and the parameters of the static nonlinearity in a number of adaptively estimated grid points. This gives the RPEM more freedom to select the grid points and hence reduces modeling errors. Limit cycle oscillations problem are encountered in many applications. Therefore, mathematical modeling of limit cycles becomes an essential topic that helps to better understand and/or to avoid limit cycle oscillations in different fields. In Part II, a second-order nonlinear ODE is used to model the periodic signal as a limit cycle oscillation. The right hand side of the ODE model is parameterized using a polynomial function in the states, and then discretized to allow for the implementation of different identification algorithms. Hence, it is possible to obtain highly accurate models by only estimating a few parameters. In Part III, different user aspects for the two nonlinear approaches of the thesis are discussed. Finally, topics for future research are presented.
|
5 |
Detection and diagnostic of freeplay induced limit cycle oscillation in the flight control system of a civil aircraf / Détection et diagnostic des oscillations en cycle limite induites par les jeux mécaniques dans le système de commande de vol d’un avion civilUrbano, Simone 18 April 2019 (has links)
Cette étude est le résultat d’une thèse CIFRE de trois ans entre le bureau d’étude d’Airbus (domaine du contrôle de l’avion) et le laboratoire TéSA à Toulouse. L’objectif principal est de proposer, développer et valider une solution logicielle pour la détection et le diagnostic d’un type spécifique de vibrations des gouvernes de profondeur et direction, appelée oscillation en cycle limite (limit cycle oscillation ou LCO en anglais), basée sur les signaux existants dans les avions civils. LCO est un terme mathématique générique définissant un mode périodique indépendant de conditions initiales et se produisant dans des systèmes non linéaires non conservatifs. Dans cette étude, nous nous intéressons au phénomène de LCO induit par les jeux mécaniques dans les gouvernes d’un avion civil. Les conséquences du LCO sont l’augmentation locale de la charge structurelle, la dégradation des qualités de vol, la réduction de la durée de vie de l’actionneur, la dégradation du confort du poste de pilotage et de la cabine, ainsi que l’augmentation des coûts de maintenance. L’état de l’art en matière de détection et de diagnostic du LCO induit par le jeu mécanique est basé sur la sensibilité du pilote aux vibrations et sur le contrôle périodique du jeu sur les gouvernes. Cette étude propose une solution basée sur les données (issues de la boucle d’asservissement des actionneurs qui agissent sur les gouvernes) pour aider au diagnostic du LCO et à l’isolement du jeu mécanique. L’objectif est d’améliorer encore plus la disponibilité des avions et de réduire les coûts de maintenance en fournissant aux compagnies aériennes un signal de contrôle pour le LCO et les jeux mécaniques. Pour cette raison, deux solutions algorithmiques pour le diagnostic des vibrations et des jeux ont été proposées. Un détecteur en temps réel pour la détection du LCO est tout d’abord proposé basé sur la théorie du rapport de vraisemblance généralisé (generalized likelihood ratio test ou GLRT en anglais). Certaines variantes et simplifications sont également proposées pour satisfaire les contraintes industrielles. Un détecteur de jeu mécanique est introduit basé sur l’identification d’un modèle de Wiener. Des approches paramétrique (estimateur de maximum de vraisemblance) et non paramétrique (régression par noyau) sont explorées, ainsi que certaines variantes des méthodes non paramétriques. En particulier, le problème de l’estimation d’un cycle d’hystérésis (choisi comme la non-linéarité de sortie d’un modèle de Wiener) est abordé. Ainsi, les problèmes avec et sans contraintes sont étudiés. Une analyse théorique, numérique (sur simulateur) et expérimentale (données de vol et laboratoire) est réalisée pour étudier les performances des détecteurs proposés et pour identifier les limitations et la faisabilité industrielle. Les résultats numériques et expérimentaux obtenus confirment que le GLRT proposé (et ses variantes / simplifications) est une méthode très efficace pour le diagnostic du LCO en termes de performance, robustesse et coût calculatoire. D’autre part, l’algorithme de diagnostic des jeux mécaniques est capable de détecter des niveaux de jeu relativement importants, mais il ne fournit pas de résultats cohérents pour des niveaux de jeu relativement faibles. En outre, des types d’entrée spécifiques sont nécessaires pour garantir des résultats répétitifs et cohérents. Des études complémentaires pourraient être menées afin de comparer les résultats de GLRT avec une approche Bayésienne et pour approfondir les possibilités et les limites de la méthode paramétrique proposée pour l’identification du modèle de Wiener. / This research study is the result of a 3 years CIFRE PhD thesis between the Airbus design office(Aircraft Control domain) and TéSA laboratory in Toulouse. The main goal is to propose, developand validate a software solution for the detection and diagnosis of a specific type of elevator andrudder vibration, called limit cycle oscillation (LCO), based on existing signals available in flightcontrol computers on board in-series aircraft. LCO is a generic mathematical term defining aninitial condition-independent periodic mode occurring in nonconservative nonlinear systems. Thisstudy focuses on the LCO phenomenon induced by mechanical freeplays in the control surface ofa civil aircraft. The LCO consequences are local structural load augmentation, flight handlingqualities deterioration, actuator operational life reduction, cockpit and cabin comfort deteriorationand maintenance cost augmentation. The state-of-the-art for freeplay induced LCO detection anddiagnosis is based on the pilot sensitivity to vibration and to periodic freeplay check on the controlsurfaces. This study is thought to propose a data-driven solution to help LCO and freeplaydiagnosis. The goal is to improve even more aircraft availability and reduce the maintenance costsby providing to the airlines a condition monitoring signal for LCO and freeplays. For this reason,two algorithmic solutions for vibration and freeplay diagnosis are investigated in this PhD thesis. Areal time detector for LCO diagnosis is first proposed based on the theory of the generalized likeli hood ratio test (GLRT). Some variants and simplifications are also proposed to be compliantwith the industrial constraints. In a second part of this work, a mechanical freeplay detector isintroduced based on the theory of Wiener model identification. Parametric (maximum likelihoodestimator) and non parametric (kernel regression) approaches are investigated, as well as somevariants to well-known nonparametric methods. In particular, the problem of hysteresis cycleestimation (as the output nonlinearity of a Wiener model) is tackled. Moreover, the constrainedand unconstrained problems are studied. A theoretical, numerical (simulator) and experimental(flight data and laboratory) analysis is carried out to investigate the performance of the proposeddetectors and to identify limitations and industrial feasibility. The obtained numerical andexperimental results confirm that the proposed GLR test (and its variants/simplifications) is a very appealing method for LCO diagnostic in terms of performance, robustness and computationalcost. On the other hand, the proposed freeplay diagnostic algorithm is able to detect relativelylarge freeplay levels, but it does not provide consistent results for relatively small freeplay levels. Moreover, specific input types are needed to guarantee repetitive and consistent results. Further studies should be carried out in order to compare the GLRT results with a Bayesian approach and to investigate more deeply the possibilities and limitations of the proposed parametric method for Wiener model identification.
|
6 |
Fault Detection for Rolling Element Bearings Using Model-Based TechniqueSimatrang, Sorn 03 September 2015 (has links)
No description available.
|
Page generated in 0.0622 seconds