• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A class of infinite dimensional stochastic processes with unbounded diffusion

Karlsson, John January 2013 (has links)
The aim of this work is to provide an introduction into the theory of infinite dimensional stochastic processes. The thesis contains the paper A class of infinite dimensional stochastic processes with unbounded diffusion written at Linköping University during 2012. The aim of that paper is to take results from the finite dimensional theory into the infinite dimensional case. This is done via the means of a coordinate representation. It is shown that for a certain kind of Dirichlet form with unbounded diffusion, we have properties such as closability, quasi-regularity, and existence of local first and second moment of the associated process. The starting chapters of this thesis contain the prerequisite theory for understanding the paper. It is my hope that any reader unfamiliar with the subject will find this thesis useful, as an introduction to the field of infinite dimensional processes.
2

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
3

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
4

Numerical methods for approximating solutions to rough differential equations

Gyurko, Lajos Gergely January 2008 (has links)
The main motivation behind writing this thesis was to construct numerical methods to approximate solutions to differential equations driven by rough paths, where the solution is considered in the rough path-sense. Rough paths of inhomogeneous degree of smoothness as driving noise are considered. We also aimed to find applications of these numerical methods to stochastic differential equations. After sketching the core ideas of the Rough Paths Theory in Chapter 1, the versions of the core theorems corresponding to the inhomogeneous degree of smoothness case are stated and proved in Chapter 2 along with some auxiliary claims on the continuity of the solution in a certain sense, including an RDE-version of Gronwall's lemma. In Chapter 3, numerical schemes for approximating solutions to differential equations driven by rough paths of inhomogeneous degree of smoothness are constructed. We start with setting up some principles of approximations. Then a general class of local approximations is introduced. This class is used to construct global approximations by pasting together the local ones. A general sufficient condition on the local approximations implying global convergence is given and proved. The next step is to construct particular local approximations in finite dimensions based on solutions to ordinary differential equations derived locally and satisfying the sufficient condition for global convergence. These local approximations require strong conditions on the one-form defining the rough differential equation. Finally, we show that when the local ODE-based schemes are applied in combination with rough polynomial approximations, the conditions on the one-form can be weakened. In Chapter 4, the results of Gyurko & Lyons (2010) on path-wise approximation of solutions to stochastic differential equations are recalled and extended to the truncated signature level of the solution. Furthermore, some practical considerations related to the implementation of high order schemes are described. The effectiveness of the derived schemes is demonstrated on numerical examples. In Chapter 5, the background theory of the Kusuoka-Lyons-Victoir (KLV) family of weak approximations is recalled and linked to the results of Chapter 4. We highlight how the different versions of the KLV family are related. Finally, a numerical evaluation of the autonomous ODE-based versions of the family is carried out, focusing on SDEs in dimensions up to 4, using cubature formulas of different degrees and several high order numerical ODE solvers. We demonstrate the effectiveness and the occasional non-effectiveness of the numerical approximations in cases when the KLV family is used in its original version and also when used in combination with partial sampling methods (Monte-Carlo, TBBA) and Romberg extrapolation.
5

Convexités et problèmes de transport optimal sur l'espace de Wiener / Convexities and optimal transport problems on the Wiener space

Nolot, Vincent 27 June 2013 (has links)
L'objet de cette thèse est d'étudier la théorie du transport optimal sur un espace de Wiener abstrait. Les résultats qui se trouvent dans quatre principales parties, portent :Sur la convexité de l'entropie relative. On prolongera des résultats connus en dimension finie, sur l'espace de Wiener muni d'une norme uniforme, à savoir que l'entropie relative est (au moins faiblement) 1-convexe le long des géodésiques induites par un transport optimal sur l'espace de Wiener.Sur les mesures à densité logarithmiquement concaves. Le premier des résultats importants consiste à montrer qu'une inégalité de type Harnack est vraie pour le semi-groupe induit par une telle mesure sur l'espace de Wiener. Le second des résultats obtenus nous fournit une inégalité en dimension finie (mais indépendante de la dimension), contrôlant la différence de deux applications de transport optimal.Sur le problème de Monge. On s'intéressera au problème de Monge sur l'espace de Wiener, muni de plusieurs normes : des normes à valeurs finies, ou encore la pseudo-norme de Cameron-Martin.Sur l'équation de Monge-Ampère. Grâce aux inégalités obtenues précédemment, nous serons en mesure de construire des solutions fortes de l'équation de Monge-Ampère (induite par le coût quadratique) sur l'espace de Wiener, sous de faibles hypothèses sur les densités des mesures considérées / The aim of this PhD is to study the optimal transportation theory in some abstract Wiener space. You can find the results in four main parts and they are aboutThe convexity of the relative entropy. We will extend the well known results in finite dimension to the Wiener space, endowed with the uniform norm. To be precise the relative entropy is (at least weakly) geodesically 1-convex in the sense of the optimal transportation in the Wiener space.The measures with logarithmic concave density. The first important result consists in showing that the Harnack inequality holds for the semi-group induced by such a measure in the Wiener space. The second one provides us a finite dimensional and dimension-free inequality which gives estimate on the difference between two optimal maps.The Monge Problem. We will be interested in the Monge Problem on the Wiener endowed with different norms: either some finite valued norms or the pseudo-norm of Cameron-Martin.The Monge-Ampère equation. Thanks to the inequalities obtained above, we will be able to build strong solutions of the Monge-Ampère (those which are induced by the quadratic cost) equation on the Wiener space, provided the considered measures satisfy weak conditions

Page generated in 0.0353 seconds