• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Labyrinth Weirs

Crookston, Brian Mark 01 December 2010 (has links)
Labyrinth weirs are often a favorable design option to regulate upstream water elevations and increase flow capacity; nevertheless, it can be difficult to engineer an optimal design due to the complex flow characteristics and the many geometric design variables of labyrinth weirs. This study was conducted to improve labyrinth weir design and analyses techniques using physical-model-based data sets from this and previous studies and by compiling published design methodologies and labyrinth weir information. A method for the hydraulic design and analyses of labyrinth weirs is presented. Discharge coefficient data for quarter-round and half-round labyrinth weirs are offered for sidewall angles of 6° to 35°. Cycle efficiency is also introduced to aid in sidewall angle selection. Parameters and hydraulic conditions that affect flow performance are discussed. The validity of this method is presented by comparing predicted results to data from previously published labyrinth weir studies. A standard geometric design layout for arced labyrinth weirs is presented. Insights and comparisons in hydraulic performance of half-round, trapezoidal, 6° and 12° sidewall angles, labyrinth weir spillways located in a reservoir with the following orientations are presented: Normal, Inverse, Projecting, Flush, Rounded Inlet, and Arced cycle configuration. Discharge coefficients and rating curves as a function of HT/P are offered. Finally, approaching flow conditions and geometric similitude are discussed; hydraulic design tools are recommended to be used in conjunction with the hydraulic design and analysis method. Nappe aeration conditions for trapezoidal labyrinth weirs on a horizontal apron with quarter- and half-round crests (sidewall angles of 6° to 35°) are presented as a design tool. This includes specified HT/P ranges, associated hydraulic behaviors, and nappe instability phenomena. The effects of artificial aeration (a vented nappe) and aeration devices (vents and nappe breakers) on discharge capacity are also presented. Nappe interference for labyrinth weirs is defined; the effects of nappe interference on the discharge capacity of a labyrinth weir cycle are discussed, including the parameterization of nappe interference regions to be used in labyrinth weir design. Finally, the applicability of techniques developed for quantifying nappe interference of sharp-crested corner weirs is examined.
2

Evaluating Shallow-Flow Rock Structures as Scour Countermeasures at Bridges

Dahle, Benjamin P. 16 July 2008 (has links) (PDF)
The Utah Department of Transportation commissioned a study to determine whether or not shallow-flow rock structures could reliably be used at bridge abutments in place of riprap. Research was conducted in a two-phase effort beginning with numerical modeling and ending with field verification of model findings. As part of phase one, two finite element meshes were created in Surface-water Modeling Software (SMS) and analyzed with FESWMS-2DH. Second, field studies were conducted and a preliminary database was developed to track field studies conducted on 98 shallow-flow rock structures in Utah. Data organization in ArcGIS® and Microsoft Access® is presented followed by instructions on how to use the database. Both numerical model and field research results indicate that shallow-flow rock structures are not viable scour countermeasures at bridges.

Page generated in 0.0283 seconds