• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Data Driven Application System for Wildfire Spread Simulation

Gu, Feng 14 December 2010 (has links)
Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it is impractical to obtain all these data with no error. Therefore, predictions from the simulation model will be different from what it is in a real wildfire. Without assimilating data from the real wildfire and dynamically adjusting the simulation, the difference between the simulation and the real wildfire is very likely to continuously grow. With the development of sensor technologies and the advance of computer infrastructure, dynamic data driven application systems (DDDAS) have become an active research area in recent years. In a DDDAS, data obtained from wireless sensors is fed into the simulation model to make predictions of the real system. This dynamic input is treated as the measurement to evaluate the output and adjust the states of the model, thus to improve simulation results. To improve the accuracy of wildfire spread simulations, we apply the concept of DDDAS to wildfire spread simulation by dynamically assimilating sensor data from real wildfires into the simulation model. The assimilation system relates the system model and the observation data of the true state, and uses analysis approaches to obtain state estimations. We employ Sequential Monte Carlo (SMC) methods (also called particle filters) to carry out data assimilation in this work. Based on the structure of DDDAS, this dissertation presents the data assimilation system and data assimilation results in wildfire spread simulations. We carry out sensitivity analysis for different densities, frequencies, and qualities of sensor data, and quantify the effectiveness of SMC methods based on different measurement metrics. Furthermore, to improve simulation results, the image-morphing technique is introduced into the DDDAS for wildfire spread simulation.
2

Wildfire Spread Prediction Using Attention Mechanisms In U-Net

Shah, Kamen Haresh, Shah, Kamen Haresh 01 December 2022 (has links) (PDF)
An investigation into using attention mechanisms for better feature extraction in wildfire spread prediction models. This research examines the U-net architecture to achieve image segmentation, a process that partitions images by classifying pixels into one of two classes. The deep learning models explored in this research integrate modern deep learning architectures, and techniques used to optimize them. The models are trained on 12 distinct observational variables derived from the Google Earth Engine catalog. Evaluation is conducted with accuracy, Dice coefficient score, ROC-AUC, and F1-score. This research concludes that when augmenting U-net with attention mechanisms, the attention component improves feature suppression and recognition, improving overall performance. Furthermore, employing ensemble modeling reduces bias and variation, leading to more consistent and accurate predictions. When inferencing on wildfire propagation at 30-minute intervals, the architecture presented in this research achieved a ROC-AUC score of 86.2% and an accuracy of 82.1%.

Page generated in 0.0684 seconds