• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 56
  • 21
  • 21
  • 12
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Influência da asa em gaivota nos coeficientes aerodinâmicos de uma aeronave / Influence of gull wing on the aerodynamic coefficients of an airplane

Barbosa, Átila Antunes França 02 September 2015 (has links)
Desde o início da década de 2010, o aumento do preço do combustível de aviação e a pressão da sociedade para redução da emissão de gases nocivos ao meio ambiente, junto com a necessidade de redução de ruído durante as fases de decolagem e pouso, levaram as companhias aéreas a buscar aeronaves mais eficientes. Para suprir essa demanda, os fabricantes de aviões comerciais solucionaram esse problema através do uso de motores de maior desempenho, que apresentam maior diâmetro que motores de gerações passadas. Desse modo, foi necessário projetar asas com maior diedro na região da raiz, possibilitando a instalação desses novos motores, e diedro menor após a seção do motor, adotando assim a solução de asa em gaivota. O presente trabalho visa analisar o impacto de diferentes tipos de asas em gaivota nos coeficientes aerodinâmicos de uma aeronave de configuração comercial típica. Para tanto, foi realizada uma revisão bibliográfica dos estudos envolvendo asas em gaivota. Numa primeira fase foi feito um estudo analítico das características aerodinâmicas de alguns modelos de aeronaves com asa em gaivota, e em uma segunda fase, foram empregadas ferramentas computacionais para analisar seus comportamentos aerodinâmicos. Posteriormente, em uma terceira fase, esses modelos foram ensaiados no túnel de vento do LAE (Laboratório de Aerodinâmica da EESC/USP), e os resultados das três fases foram comparados. / Since the beginning of the 2010s, the increasing price of aviation fuel and the pressure of society to reduce the emission of harmful gases into the environment, coupled with the need of noise reduction during the takeoff and landing, induce carrier companies to look for more efficient airplanes. To furnish this demand, the airplane manufacturers solved the problem using high performance engines, which present a larger diameter than the engines from previous generations. Thereby, it was necessary to project wing with higher dihedral on the root portion, enabling the installation of these new engines, and a lower dihedral after the engine section, thus adopting a gull wing solution. This research project aims at analyzing the impact of different types of gull wing on the aerodynamic coefficients of a typical commercial configuration airplane. For this purpose, a bibliographic review about the studies related to gull wings was performed. In a first phase, an analytical analysis of the aerodynamic characteristics of some airplane model with gull wings was done, and in a second phase, computational programs was used to study their aerodynamic behavior. Later, in a third phase, these models were tested in the wind tunnel of LAE (Laboratory of Aerodynamics of EESC/USP), and the results from the three phases were compared.
32

An Examination of Configurations for Using Infrared to Measure Boundary Layer Transition

Freels, Justin Reed 2012 August 1900 (has links)
Infrared transition location estimates can be fast and useful measurements in wind tunnel and flight tests. Because turbulent boundary layers have a much higher rate of convective heat transfer than laminar boundary layers, a difference in surface temperature can be observed between turbulent and laminar regions of an airfoil at a different temperature than the free stream air temperature. Various implementations of this technique are examined in a wind tunnel. These include using a heat lamp as an external source and circulating fluid inside of the airfoil. Furthermore, ABS plastic and aluminum airfoils are tested with and without coatings such as black paint and surface wraps. The results show that thermal conduction within the model and surface reflections are the driving issues in designing an IR system for detecting transition. Aluminum has a high thermal diffusivity so is a poor choice for this method. However, its performance can be improved using an insulating layer. Internal fluid circulation was far more successful than the heat lamp because it eliminates the reflected IR due to the heat lamp. However, using smooth surface wraps can mitigate reflection issues caused by the heat lamps by reducing the scatter within the reflection, producing an IR image with fewer contaminating reflections.
33

Investigation Of Wind Effects On Tall Buildings Through Wind Tunnel Testing

Kayisoglu, Bengi 01 June 2011 (has links) (PDF)
In recent years, especially in the crowded city-centers where land prizes have become extremely high, tall buildings with more than 30 floors have started to be designed and constructed in Turkey. On the other hand, the technical improvements have provided the opportunity of design and construction of more slender structures which are influenced by the wind actions more. If the building is flexible, wind can interact with it so the wind induced oscillations can be significantly magnified. In order to analyze the response of such buildings under wind effects, wind tunnel tests are accepted to be the most powerful tool all over the world. In this study, a series of tests were performed in Ankara Wind Tunnel on a model building in the shape of a rectangular prism. For the similitude of flow conditions, passive devices were designed. The response of the model building was measured through a high frequency base balance which was designed specifically for this case study. Through the tests, the effects of turbulence intensity, vortex shedding and wind angle of attack on the response of the building were questioned. Finally, the results were compared with the results of various technical specifications about wind.
34

Dynamic control of aerodynamic forces on a moving platform using active flow control

Brzozowski, Daniel Paul 15 November 2011 (has links)
The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2-3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.
35

Design, Construction And Preliminary Testin Of An Aeroservoelastic Test Apparatus To Be Used In Ankara Wind Tunnel

Unal, Sadullah Utku 01 February 2006 (has links) (PDF)
In this thesis, an aeroservoelastic test appratus is designed to investigate the flutter phenomena in a low speed wind tunnel environment. Flutter is an aeroelastic instability that may occur at control surfaces of aircrafts and missiles. Aerodynamic, elastic, and inertial forces are involved in flutter. A mathematical model using aeroelastic equations of motion is derived to investigate flutter and is used as a basis to design the test setup. Simulations using this mathematical model are performed and critical flutter velocities and frequencies are found. Stiffness characteristics of the test setup are determined using the results of these simulations. The test setup is a two degrees of freedom system, with motions in pitch and plunge, and is controlled by a servomotor in the pitch degree of freedom. A NACA 0012 airfoil is used as a control surface in the test setup. Using this setup, the flutter phenomena is generated in Ankara Wind Tunnel (AWT) and experiments are conducted to validate the results of the theoretical aeroelastic mathematical model calculations.
36

Enhanced wind tunnel techniques and aerodynamic force models for yacht sails

Hansen, Heikki January 2006 (has links)
Accurate prediction of performance is an important aspect of modern sailing yacht design and provides a competitive advantage on the racecourse and in the marketplace. Although wind tunnel testing of yacht sails is a common tool for obtaining input data for Velocity Prediction Programs, its results have not been validated against aerodynamic full-scale measurements as quality full-scale data is rare. Wind tunnel measurements are conducted at the Twisted Flow Wind Tunnel of The University of Auckland and are compared to the full-scale aerodynamic force measurements from the Berlin Sail-Force-Dynamometer. To realise this comparison wind tunnel techniques and aerodynamic force models for yacht sails are enhanced; this in turn also improves the accuracy of Velocity Prediction Programs. Force and surface pressure measurements were conducted demonstrating that the interaction of the hull/deck with the sails has a significant effect on the side force and the force perpendicular to the deck plane, and that this should be considered in aerodynamic analysis of sails and the performance prediction of yachts. The first Real-Time Velocity Prediction Program for wind tunnel testing has been developed and implemented as an additional module of FRIENDSHIP-Equilibrium. Model sails can now be trimmed based on the full-scale performance of the yacht, and at the correct heel angle, which makes the trimming process in the wind tunnel much more similar to the real life situation. Improved aerodynamic force models have been developed from realistically depowered sail trims obtained with the Real-Time Velocity Prediction Program. An empirical model that describes the force and moment changes due to depowering in detail has been developed and implemented. The standard semi-empirical trim parameter model, which expresses depowering in a more generic way, has been enhanced based on aerodynamic principles and validated against the wind tunnel results. Utilising the enhanced wind tunnel techniques and aerodynamic force models, a generally good qualitative and quantitative agreement with the full-scale data is achieved. Remaining challenges associated with full-scale and wind tunnel tests are however also highlighted and, based on this work alone, a conclusive judgement that scaling effects are negligible cannot be made. / Whole document restricted, but available by request, use the feedback form to request access. / IPENZ Craven Scholarship; The University of Auckland Yacht Research Unit Scholarship; The University of Auckland Graduate Research Fund
37

Enhanced wind tunnel techniques and aerodynamic force models for yacht sails

Hansen, Heikki January 2006 (has links)
Accurate prediction of performance is an important aspect of modern sailing yacht design and provides a competitive advantage on the racecourse and in the marketplace. Although wind tunnel testing of yacht sails is a common tool for obtaining input data for Velocity Prediction Programs, its results have not been validated against aerodynamic full-scale measurements as quality full-scale data is rare. Wind tunnel measurements are conducted at the Twisted Flow Wind Tunnel of The University of Auckland and are compared to the full-scale aerodynamic force measurements from the Berlin Sail-Force-Dynamometer. To realise this comparison wind tunnel techniques and aerodynamic force models for yacht sails are enhanced; this in turn also improves the accuracy of Velocity Prediction Programs. Force and surface pressure measurements were conducted demonstrating that the interaction of the hull/deck with the sails has a significant effect on the side force and the force perpendicular to the deck plane, and that this should be considered in aerodynamic analysis of sails and the performance prediction of yachts. The first Real-Time Velocity Prediction Program for wind tunnel testing has been developed and implemented as an additional module of FRIENDSHIP-Equilibrium. Model sails can now be trimmed based on the full-scale performance of the yacht, and at the correct heel angle, which makes the trimming process in the wind tunnel much more similar to the real life situation. Improved aerodynamic force models have been developed from realistically depowered sail trims obtained with the Real-Time Velocity Prediction Program. An empirical model that describes the force and moment changes due to depowering in detail has been developed and implemented. The standard semi-empirical trim parameter model, which expresses depowering in a more generic way, has been enhanced based on aerodynamic principles and validated against the wind tunnel results. Utilising the enhanced wind tunnel techniques and aerodynamic force models, a generally good qualitative and quantitative agreement with the full-scale data is achieved. Remaining challenges associated with full-scale and wind tunnel tests are however also highlighted and, based on this work alone, a conclusive judgement that scaling effects are negligible cannot be made. / Whole document restricted, but available by request, use the feedback form to request access. / IPENZ Craven Scholarship; The University of Auckland Yacht Research Unit Scholarship; The University of Auckland Graduate Research Fund
38

Enhanced wind tunnel techniques and aerodynamic force models for yacht sails

Hansen, Heikki January 2006 (has links)
Accurate prediction of performance is an important aspect of modern sailing yacht design and provides a competitive advantage on the racecourse and in the marketplace. Although wind tunnel testing of yacht sails is a common tool for obtaining input data for Velocity Prediction Programs, its results have not been validated against aerodynamic full-scale measurements as quality full-scale data is rare. Wind tunnel measurements are conducted at the Twisted Flow Wind Tunnel of The University of Auckland and are compared to the full-scale aerodynamic force measurements from the Berlin Sail-Force-Dynamometer. To realise this comparison wind tunnel techniques and aerodynamic force models for yacht sails are enhanced; this in turn also improves the accuracy of Velocity Prediction Programs. Force and surface pressure measurements were conducted demonstrating that the interaction of the hull/deck with the sails has a significant effect on the side force and the force perpendicular to the deck plane, and that this should be considered in aerodynamic analysis of sails and the performance prediction of yachts. The first Real-Time Velocity Prediction Program for wind tunnel testing has been developed and implemented as an additional module of FRIENDSHIP-Equilibrium. Model sails can now be trimmed based on the full-scale performance of the yacht, and at the correct heel angle, which makes the trimming process in the wind tunnel much more similar to the real life situation. Improved aerodynamic force models have been developed from realistically depowered sail trims obtained with the Real-Time Velocity Prediction Program. An empirical model that describes the force and moment changes due to depowering in detail has been developed and implemented. The standard semi-empirical trim parameter model, which expresses depowering in a more generic way, has been enhanced based on aerodynamic principles and validated against the wind tunnel results. Utilising the enhanced wind tunnel techniques and aerodynamic force models, a generally good qualitative and quantitative agreement with the full-scale data is achieved. Remaining challenges associated with full-scale and wind tunnel tests are however also highlighted and, based on this work alone, a conclusive judgement that scaling effects are negligible cannot be made. / Whole document restricted, but available by request, use the feedback form to request access. / IPENZ Craven Scholarship; The University of Auckland Yacht Research Unit Scholarship; The University of Auckland Graduate Research Fund
39

Enhanced wind tunnel techniques and aerodynamic force models for yacht sails

Hansen, Heikki January 2006 (has links)
Accurate prediction of performance is an important aspect of modern sailing yacht design and provides a competitive advantage on the racecourse and in the marketplace. Although wind tunnel testing of yacht sails is a common tool for obtaining input data for Velocity Prediction Programs, its results have not been validated against aerodynamic full-scale measurements as quality full-scale data is rare. Wind tunnel measurements are conducted at the Twisted Flow Wind Tunnel of The University of Auckland and are compared to the full-scale aerodynamic force measurements from the Berlin Sail-Force-Dynamometer. To realise this comparison wind tunnel techniques and aerodynamic force models for yacht sails are enhanced; this in turn also improves the accuracy of Velocity Prediction Programs. Force and surface pressure measurements were conducted demonstrating that the interaction of the hull/deck with the sails has a significant effect on the side force and the force perpendicular to the deck plane, and that this should be considered in aerodynamic analysis of sails and the performance prediction of yachts. The first Real-Time Velocity Prediction Program for wind tunnel testing has been developed and implemented as an additional module of FRIENDSHIP-Equilibrium. Model sails can now be trimmed based on the full-scale performance of the yacht, and at the correct heel angle, which makes the trimming process in the wind tunnel much more similar to the real life situation. Improved aerodynamic force models have been developed from realistically depowered sail trims obtained with the Real-Time Velocity Prediction Program. An empirical model that describes the force and moment changes due to depowering in detail has been developed and implemented. The standard semi-empirical trim parameter model, which expresses depowering in a more generic way, has been enhanced based on aerodynamic principles and validated against the wind tunnel results. Utilising the enhanced wind tunnel techniques and aerodynamic force models, a generally good qualitative and quantitative agreement with the full-scale data is achieved. Remaining challenges associated with full-scale and wind tunnel tests are however also highlighted and, based on this work alone, a conclusive judgement that scaling effects are negligible cannot be made. / Whole document restricted, but available by request, use the feedback form to request access. / IPENZ Craven Scholarship; The University of Auckland Yacht Research Unit Scholarship; The University of Auckland Graduate Research Fund
40

Influência da asa em gaivota nos coeficientes aerodinâmicos de uma aeronave / Influence of gull wing on the aerodynamic coefficients of an airplane

Átila Antunes França Barbosa 02 September 2015 (has links)
Desde o início da década de 2010, o aumento do preço do combustível de aviação e a pressão da sociedade para redução da emissão de gases nocivos ao meio ambiente, junto com a necessidade de redução de ruído durante as fases de decolagem e pouso, levaram as companhias aéreas a buscar aeronaves mais eficientes. Para suprir essa demanda, os fabricantes de aviões comerciais solucionaram esse problema através do uso de motores de maior desempenho, que apresentam maior diâmetro que motores de gerações passadas. Desse modo, foi necessário projetar asas com maior diedro na região da raiz, possibilitando a instalação desses novos motores, e diedro menor após a seção do motor, adotando assim a solução de asa em gaivota. O presente trabalho visa analisar o impacto de diferentes tipos de asas em gaivota nos coeficientes aerodinâmicos de uma aeronave de configuração comercial típica. Para tanto, foi realizada uma revisão bibliográfica dos estudos envolvendo asas em gaivota. Numa primeira fase foi feito um estudo analítico das características aerodinâmicas de alguns modelos de aeronaves com asa em gaivota, e em uma segunda fase, foram empregadas ferramentas computacionais para analisar seus comportamentos aerodinâmicos. Posteriormente, em uma terceira fase, esses modelos foram ensaiados no túnel de vento do LAE (Laboratório de Aerodinâmica da EESC/USP), e os resultados das três fases foram comparados. / Since the beginning of the 2010s, the increasing price of aviation fuel and the pressure of society to reduce the emission of harmful gases into the environment, coupled with the need of noise reduction during the takeoff and landing, induce carrier companies to look for more efficient airplanes. To furnish this demand, the airplane manufacturers solved the problem using high performance engines, which present a larger diameter than the engines from previous generations. Thereby, it was necessary to project wing with higher dihedral on the root portion, enabling the installation of these new engines, and a lower dihedral after the engine section, thus adopting a gull wing solution. This research project aims at analyzing the impact of different types of gull wing on the aerodynamic coefficients of a typical commercial configuration airplane. For this purpose, a bibliographic review about the studies related to gull wings was performed. In a first phase, an analytical analysis of the aerodynamic characteristics of some airplane model with gull wings was done, and in a second phase, computational programs was used to study their aerodynamic behavior. Later, in a third phase, these models were tested in the wind tunnel of LAE (Laboratory of Aerodynamics of EESC/USP), and the results from the three phases were compared.

Page generated in 0.1324 seconds