Spelling suggestions: "subject:"find turbine"" "subject:"kind turbine""
81 |
Dynamic Substructuring of an A600 Wind TurbineAl Kaysee, Ahmed, Wronski, Marek January 2014 (has links)
A limited and extendable master thesis is representing the first step in the experimental substructuring of an A600 wind turbine. Additional masses have been designed, manufactured and added to the sub components for the laboratory experimental tests. Further preparations for dynamic experimental tests have been described and implemented. Vibrational tests of a modified wind turbine blade have been made using the Leuven Measurements System (LMS) for excitations and data acquisition purposes. The theory of frequency response function based substructuring applied on the wind turbine blade model is demonstrated. The theory and an example of a Matlab coded spring-mass system, an experimental model of a wind turbine blade and FRFs stemming from measurements are reported.
|
82 |
Reduced order modeling of wind turbines in MatLab for grid integration and control studiesAntonelli, Jacopo January 2012 (has links)
The current trend in the wind power industry is to develop wind turbines of constantly increasing size and rated power, as well as wind farms of growing size and installed wind power. A careful study of the behaviour of the wind turbines during their operation is of crucial importance in the planning phase and in the design stage of a wind farm, in order to minimize the risks deriving from a non accurate prediction of their impact in the electric grid causing sensible faults of the system. To analyze the impact of the wind turbines in the system, motivates the development of accurate yet simple models. To be able to practically deal with this topics, a simple model of a wind turbine system is investigated and developed; it has the aim to describe the behaviour of a wind turbine in operation on a mechanical standpoint. The same reduced order simple model can also be employed for control system studies; the control system model that can’t be used in generation, can use the reduced model. Together with the analytical description of such model, is realized a MatLab code to numerically analyse the response of the system, and the results of the simulation through such code are presented. The objective of this thesis has been to provide a simple benchmark tool in MatLab for grid integration and control studies for interested researchers.
|
83 |
Benchmarking of Optimization Modules for Two Wind Farm Design Software ToolsYilmaz, Eftun January 2012 (has links)
Optimization of wind farm layout is an expensive and complex task involving several engineering challenges. The layout of any wind farm directly impacts profitability and return of investment. Several software optimization modules in line with wind farm design tools in industry is currently attempting to place the turbines in locations with good wind resources while adhering to the constraints of a defined objective function. Assessment of these software tools needs to be performed clearly for assessing different tools in wind farm layout design process. However, there is still not a clear demonstration of benchmarking and comparison of these software tools even for simple test cases. This work compares two different optimization software namely openWind and WindPRO commercial software tools mutually.
|
84 |
Wind Turbine Sound Propagation in the Atmospheric Boundary LayerÖhlund, Olof January 2014 (has links)
Wind turbines have grown both in size and number in the past decades. The taller turbines has made it possible to place them in forest areas which is fortunate for a country like Sweden with lots of forest. An issue with wind turbines is the sound they produce. The sound mainly comes from the rotor blades when they pass through the air. The sound heard some distance away from the turbine is sometimes masked by ambient background noise such as wind induced sound in the vegetation, but this is not always the case. Noise concerns among some people living in the vicinity of wind turbines are sometimes raised. Sound propagation models are used to predict the wind turbine sound level at certain distance. It is important that these models are accurate. Sound propagation is greatly influenced by the meteorological conditions. These conditions change over the day and year and vary a lot depending on the terrain conditions. In the past, large meteorological propagation effects have been found for sound sources close to the ground. Higher elevated sources like wind turbines have not been studied as much. One reason for this is that wind turbines are a relatively new sound source. In this thesis the meteorological influence on the wind turbine sound propagation is studied. Continuous simultaneous acoustic and meteorological measurements are performed at two different wind turbine sites during two years to capture all variations in the weather. The two sites are covered by forest, one is flat and the other has shifting terrain. The sites are representative for many locations in Sweden and around the world. The differences between the measured and expected wind turbine sound levels are established for different meteorological categories. The median of all deviations within each meteorological category is then compared. During no snow cover conditions the variation of the median under different meteorological conditions is 6 dBA and during snow cover the variation of the median is 14 dBA. The variations are due to the combined effect of refraction, ground conditions and terrain shape. The deviations from an expected value are seen for all octave bands from 63 Hz to 1000 Hz but are found to most distinct at low frequencies of around 125Hz. Meteorological effects starts to be important somewhere between 400 m and 1000 m from wind turbines.The characteristic "swish" sound from wind turbines are also studied in this thesis. The swish sound or as it is also called, the amplitude modulated sound, is found to be more common under some meteorological conditions such as temperature inversions and downwind conditions. A metric for detection of amplitude modulation duration and strength is proposed. Amplitude modulation, is according to some, the reason why wind turbine sound is perceived as more annoying than other typical environmental sounds at the same sound level. The swishes probably increase the probability to hear the wind turbine sound in presence of other background noise.
|
85 |
Stress and Fracture Analysis of a Class of Bonded Joints in Wind Turbine BladesChen, Chang 03 October 2013 (has links)
A simplified model is proposed to investigate the stress fields and the strain energy release rate (SERR) associated with cracks in bonded joints in wind turbine blades. The proposed two-dimensional model consists of nonparallel upper and lower shells with adhesive between the shells at the tapered end. Nonlinear finite element analysis (FEA) is performed in a systematic parametric study of material and geo- metric properties. Two failure modes and their locations are predicted at different combinations of parameters: yielding at the outside end of the adhesive and interface cracking at the inside end of the bondline. Effect of the shell curvature on the stress fields is also considered.
Based on the classic beam theory and the beam-on-elastic-foundation (BOEF) assumption, stress and displacement fields of the adhesively-bonded joint were determined by a new theoretical model to support the results from the numerical computation. The failure analysis is continued by studying the effects of manufacturing defects in the adhesive bond. Single and multiple voids are embedded to simulate air bubble trapped in the interface. The numerical and analytical studies are conducted to investigate SERR associated with the voids and results are provided to illustrate the effects of void position and void size.
|
86 |
DFIG Based Wind Turbine Contribution to System Frequency ControlJalali, Mansour 17 November 2011 (has links)
Abstract
Energy is one of the most important factors that continue to influence the shape of civilization in the 21st Century. The cost and availability of energy significantly impacts our quality of life, the health of national economies and the stability of our environment. In recent years there has been a significant global commitment to develop clean and alternative forms of energy resources and it is envisioned that by 2020 10% of world energy will be supplied from renewable resources, and there is an expectation that this value will grow to 50% by 2050.
Among renewable energy resources, wind generation technology has matured considerably, and wind is fairly distributed around the globe and therefore available to world communities. In the last decade, wind generation has been the fastest growing energy source globally. However more penetration of wind energy into existing power networks raises concern for power system operators and regulators. Traditionally wind energy convertors do not participate in frequency regulation or Automatic Generation Control (AGC) services, and therefore large penetration of wind power into the power systems can result in a reduction of total system inertia and robustness of the frequency response to the disturbances.
The research presented in this thesis covers some of the operational and design aspects of frequency control and AGC services in power systems with mixed generation resources. The thesis examines the operation of the Doubly Fed Induction Generator (DFIG) with a modified inertial loop control considering single-area and two-area frequency control, both primary control and AGC. The thesis presents new, small-perturbation, linear, dynamic, mathematical models for the simulation of primary regulation services and AGC services for single-area and two-area power systems with a mix of conventional and non-conventional DFIG-based wind generators. In order to improve the performance of the frequency regulation and AGC services of the above systems, a parameter optimization technique based on the minimization of the Integral of Squared Errors (ISE) is applied to determine the optimal settings for the proportional-integral (PI) controller gains of the DFIG machines.
The thesis presents analytical studies with various perturbations to demonstrate the effectiveness and participation of DFIG-based wind generators in frequency support services and draws some important conclusions. Variation in DFIG penetration levels, and wind speed levels (strong wind and weak wind) on system frequency control performance, has also been examined in the thesis.
|
87 |
Μελέτη, προσομοίωση και κατασκευή συστήματος διασύνδεσης ανεμογεννήτριας μικρής ισχύος με το δίκτυο χαμηλής τάσηςΠεράκης, Κωνσταντίνος 11 January 2011 (has links)
Η παρούσα εργασία πραγματεύεται αφ’ενός μεν τη μελέτη, μέσω προσομοίωσης, ενός αιολικού συστήματος παραγωγής ηλεκτρικής ενέργειας συνδεδεμένο στο δίκτυο χαμηλής τάσης αφ’ετέρου δε την κατασκευή ενός τμήματος του συστήματος αυτού. Το αιολικό σύστημα συγκροτείται από μία ανεμογεννήτρια με σύγχρονη γεννήτρια μόνιμων μαγνητών και διατάξεις ηλεκτρονικών ισχύος που μετατρέπουν αρχικά την εναλλασσόμενη τάση σε συνεχή και στη συνέχεια τη συνεχή τάση σε εναλλασσόμενη, συχνότητας 50Hz, για τη σύνδεση με το δίκτυο. Πιο συγκεκριμένα, χρησιμοποιούνται κατά σειρά μία μη ελεγχόμενη ανορθωτική γέφυρα με διόδους για την ανόρθωση της τάσης, που παράγεται από τη γεννήτρια, ένας μετατροπέας τύπου Boost για την ανύψωση και σταθεροποίηση της τάσης και τέλος, ένας μονοφασικός αντιστροφέας με MOSFET. Η έξοδος του αντιστροφέα, μέσω φίλτρου και μετασχηματιστή, συνδέεται στο δίκτυο. Στόχος είναι η κατασκευή ενός πειραματικού πρωτοτύπου για τη σύνδεση της ανεμογεννήτριας του εργαστηρίου, ισχύος 1kW, με το δίχτυο χαμηλής τάσης, ώστε να χρησιμοποιηθεί για εργαστηριακούς και ερευνητικούς σκοπούς. / This thesis presents the study, modeling and implementation of a wind power system consists of a permanent magnet synchronous generator, a rectifier and boost stage, as well as an inverter stage for grid connection. Control applies on the dc-dc converter aiming at rendering the connection to the electrical power grid more versatile. The analysis was performed by developing an appropriate model for the system at the Matlab computing program aided by the Simulink toolbox of The MathWorks,Inc.
|
88 |
Μελέτη υπεράκτιου αιολικού πάρκου και σύνδεσή του στο δίκτυοΜπάρλας, Ιωάννης 08 January 2013 (has links)
Σκοπός αυτής της διπλωματικής εργασίας είναι η μελέτη όλων των στοιχείων που είναι αναγκαία για την κατασκευή ενός υπεράκτιου αιολικού πάρκου και της διασύνδεσης του στο δίκτυο μεταφορά και διανομής ηλεκτρικής ενέργειας. Γίνεται μια αναφορά στις ανεμογεννήτριες που υπάρχουν και μπορούν να τοποθετηθούν σε αντίστοιχες μελέτες. Επίσης οι τοπολογίες που μπορούν να στηρίξουν στη διασύνδεση των ανεμογεννητριών και να καταστήσουν δυνατή την δημιουργία ενός πάρκου ,αλλά και τα τεχνολογικά μέσα με τα οποία μπορούμε να μεταφέρουμε αυτή την ενέργεια στο δίκτυο διανομής και μεταφοράς ώστε να χρησιμοποιηθεί προς οποιαδήποτε κατεύθυνση. Τέλος παρουσιάζεται μια μελέτη ενός πάρκου σε μια παράκτια περιοχή της χώρας προσδίδοντας στοιχεία όμοια με τις περισσότερες περιοχές που μπορούν να δεχτούν μια τέτοια κατασκευή. Η μελέτη ολοκληρώνεται με μια προσομοίωση μιας ανεμογεννήτριας του τύπου που προτείνεται να εγκατασταθεί και παρουσιάζει τα αποτελέσματα λειτουργίας της στις αιολικές συνθήκες που επικρατούν το μεγαλύτερο διάστημα. / The aim of this dissertation was to present a project of an offshore wind farm including every point which is considered on a familiar construction and reviling the kinds of connections to the grid between that. There is a reference to the spices of wind turbines produced and used by the industry. Moreover the topologies of wind farms based on hvac or hvdc transmission systems, presenting categories with solutions for both cases. At the end a project of an offshore farm in the Greek coastline took place providing a solution to the majority of same areas around Greece with the same wind characteristics and depths. To sum up a simulation of a DFIG wind turbine functioned under the areas’ wind data giving an image of the pure power that is able to produce.
|
89 |
Frequency domain modeling and multidisciplinary design optimization of floating offshore wind turbinesKarimi, Meysam 19 October 2018 (has links)
Offshore floating wind turbine technology is growing rapidly and has the potential to become one of the main sources of affordable renewable energy. However, this technology is still immature owing in part to complications from the integrated design of wind turbines and floating platforms, aero-hydro-servo-elastic responses, grid integrations, and offshore wind resource assessments. This research focuses on developing methodologies to investigate the technical and economic feasibility of a wide range of floating offshore wind turbine support structures. To achieve this goal, interdisciplinary interactions among hydrodynamics, aerodynamics, structure and control subject to constraints on stresses/loads, displacements/rotations, and costs need to be considered. Therefore, a multidisciplinary design optimization approach for minimum levelized cost of energy executed using parameterization schemes for floating support structures as well as a frequency domain dynamic model for the entire coupled system. This approach was based on a tractable framework and models (i.e. not too computationally expensive) to explore the design space, but retaining required fidelity/accuracy.
In this dissertation, a new frequency domain approach for a coupled wind turbine, floating platform, and mooring system was developed using a unique combination of the validated numerical tools FAST and WAMIT. Irregular wave and turbulent wind loads were incorporated using wave and wind power spectral densities, JONSWAP and Kaimal. The system submodels are coupled to yield a simple frequency domain model of the system with a flexible moored support structure. Although the model framework has the capability of incorporating tower and blade structural DOF, these components were considered as rigid bodies for further simplicity here. A collective blade pitch controller was also defined for the frequency domain dynamic model to increase the platform restoring moments. To validate the proposed framework, predicted wind turbine, floating platform and mooring system responses to the turbulent wind and irregular wave loads were compared with the FAST time domain model.
By incorporating the design parameterization scheme and the frequency domain modeling the overall system responses of tension leg platforms, spar buoy platforms, and semisubmersibles to combined turbulent wind and irregular wave loads were determined. To calculate the system costs, a set of cost scaling tools for an offshore wind turbine was used to estimate the levelized cost of energy. Evaluation and comparison of different classes of floating platforms was performed using a Kriging-Bat optimization method to find the minimum levelized cost of energy of a 5 MW NREL offshore wind turbine across standard operational environmental conditions. To show the potential of the method, three baseline platforms including the OC3-Hywind spar buoy, the MIT/NREL TLP, and the OC4-DeepCwind semisubmersible were compared with the results of design optimization. Results for the tension leg and spar buoy case studies showed 5.2% and 3.1% decrease in the levelized cost of energy of the optimal design candidates in comparison to the MIT/NREL TLP and the OC3-Hywind respectively. Optimization results for the semisubmersible case study indicated that the levelized cost of energy decreased by 1.5% for the optimal design in comparison to the OC4-DeepCwind. / Graduate
|
90 |
Projeto e Testes de um Aerogerador de Pequeno Porte e de um Sistema de MediÃÃo de EficiÃncia MecÃnica / Small Scale Wind Turbine and Mechanical Efficiency Measuring System Test and DesignAlberto dos Santos Lopes 28 February 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Neste trabalho, foi desenvolvida um turbina eÃlica de 490 W em conjunto com uma estrutura para testes de desempenho de aerogeradores deste porte. Foi empregado o mÃtodo analÃtico BEM (Blade Element Momentum Theory) para desenvolvimento, imensionamento, fabricaÃÃo e testes dos componentes da turbina e do sistema de mediÃÃo, abrangendo o estudo aerodinÃmico das pÃs a serem testadas, seu respectivo carregamento, ensaio destrutivo e previsÃo de desempenho. Para tanto, foram consideradas as etapas do cÃlculo e projeto mecÃnico de todos os principais componentes. TambÃm foi definida a metodologia de testes envolvendo a especificaÃÃo de instrumentos, teste em bancada, testes de campo, tratamento de dados e geraÃÃo de resultados. Os resultados foram posteriormente comparados com aqueles gerados pelo BEM. O aparato construÃdo permitiu estabelecer uma estrutura adequada para futuros testes com rotores eÃlicos de maiores diÃmetros e complexidade tecnolÃgica. / In this paper was developed a small scale wind turbine and a structure for performance testing. It was employed the BEM (Blade Element Momentum Theory) to developing, design, fabrication and tests of wind turbine and the measuring system, including the blades aerodynamic analysis which was tested, it respective loading, destructive test and performance forecast. It was considered the complete mechanical design of main components. It was defined the tests methodology involving the instruments specifications, bench tests, field experiments, collected data analysis and results exposition and discussion. In order to validate the manufactured structure and system, it was verified the aerodynamic performance of a small scale wind turbine with 490 W. The results were compared with those proposed by BEM theory. The constructed device allowed establishing an appropriate condition for bigger wind turbine rotor in the future and with more technological complexity.
|
Page generated in 0.1015 seconds