• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • Tagged with
  • 13
  • 13
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture of Deep-Marine Interchannel Deposits: Isaac Formation, Windermere Supergroup (Neoproterozoic), Southern Canadian Cordillera

Davis, Leena 08 February 2011 (has links)
The Windermere turbidite system, exposed in the southern Canadian Cordillera, east-central British Columbia, is a continental scale, passive margin, submarine fan system, part of which is well exposed in the Castle Creek study area. Here millimetre- to decametre-scale sedimentological and stratigraphic observations identified five facies in interchannel strata: very thin- to medium-bedded turbidite (F1), thick-bedded turbidite (F2) coarse-tail graded structureless sandstone (F3), mudstone clast breccia (F4) and carbonaceous mudstone (F5) and four architectural elements: channel (AE1), distal levee (AE2), overbank splays (AE3) and crevasse splays (AE4). These elements are assembled into a predictive depositional model that describes the initiation and evolution of sandy splay elements developed in distal levee strata of deep-marine slope channels. These data can be used in hydrocarbon exploration to identify and differentiate splay deposits in core and on seismic, and thereby improve the accuracy of subsurface reservoir models.
2

Architecture of Deep-Marine Interchannel Deposits: Isaac Formation, Windermere Supergroup (Neoproterozoic), Southern Canadian Cordillera

Davis, Leena 08 February 2011 (has links)
The Windermere turbidite system, exposed in the southern Canadian Cordillera, east-central British Columbia, is a continental scale, passive margin, submarine fan system, part of which is well exposed in the Castle Creek study area. Here millimetre- to decametre-scale sedimentological and stratigraphic observations identified five facies in interchannel strata: very thin- to medium-bedded turbidite (F1), thick-bedded turbidite (F2) coarse-tail graded structureless sandstone (F3), mudstone clast breccia (F4) and carbonaceous mudstone (F5) and four architectural elements: channel (AE1), distal levee (AE2), overbank splays (AE3) and crevasse splays (AE4). These elements are assembled into a predictive depositional model that describes the initiation and evolution of sandy splay elements developed in distal levee strata of deep-marine slope channels. These data can be used in hydrocarbon exploration to identify and differentiate splay deposits in core and on seismic, and thereby improve the accuracy of subsurface reservoir models.
3

Architecture of Deep-Marine Interchannel Deposits: Isaac Formation, Windermere Supergroup (Neoproterozoic), Southern Canadian Cordillera

Davis, Leena 08 February 2011 (has links)
The Windermere turbidite system, exposed in the southern Canadian Cordillera, east-central British Columbia, is a continental scale, passive margin, submarine fan system, part of which is well exposed in the Castle Creek study area. Here millimetre- to decametre-scale sedimentological and stratigraphic observations identified five facies in interchannel strata: very thin- to medium-bedded turbidite (F1), thick-bedded turbidite (F2) coarse-tail graded structureless sandstone (F3), mudstone clast breccia (F4) and carbonaceous mudstone (F5) and four architectural elements: channel (AE1), distal levee (AE2), overbank splays (AE3) and crevasse splays (AE4). These elements are assembled into a predictive depositional model that describes the initiation and evolution of sandy splay elements developed in distal levee strata of deep-marine slope channels. These data can be used in hydrocarbon exploration to identify and differentiate splay deposits in core and on seismic, and thereby improve the accuracy of subsurface reservoir models.
4

Architecture of Deep-Marine Interchannel Deposits: Isaac Formation, Windermere Supergroup (Neoproterozoic), Southern Canadian Cordillera

Davis, Leena January 2011 (has links)
The Windermere turbidite system, exposed in the southern Canadian Cordillera, east-central British Columbia, is a continental scale, passive margin, submarine fan system, part of which is well exposed in the Castle Creek study area. Here millimetre- to decametre-scale sedimentological and stratigraphic observations identified five facies in interchannel strata: very thin- to medium-bedded turbidite (F1), thick-bedded turbidite (F2) coarse-tail graded structureless sandstone (F3), mudstone clast breccia (F4) and carbonaceous mudstone (F5) and four architectural elements: channel (AE1), distal levee (AE2), overbank splays (AE3) and crevasse splays (AE4). These elements are assembled into a predictive depositional model that describes the initiation and evolution of sandy splay elements developed in distal levee strata of deep-marine slope channels. These data can be used in hydrocarbon exploration to identify and differentiate splay deposits in core and on seismic, and thereby improve the accuracy of subsurface reservoir models.
5

Origin and Architecture of Deep-water Levee Deposits: Insight from the Ancient Rock Record and Experiments

Khan, Zishann 22 December 2011 (has links)
Although levee deposits make up a significant part of modern and ancient deep-marine slope systems, details of their internal lithological composition and stratal architecture remain poorly documented. At the Castle Creek study area, strata of the Neoproterozoic Isaac Formation (Windermere Supergroup) crop out superbly in a kilometre-scale section through a sinuous deep-water channel-levee system (ICC3). Levee deposits near the outer bend of the channel consist of sandstone-rich (sandstone-to-mudstone ratio of 68:42), medium- to thick-bedded turbidites interstratified with thinly-bedded turbidites. Structureless sandstone (Ta), planar laminated sandstone (Tb), non-climbing ripple cross-stratified sandstone (Tc) and massive and laminated siltstone (Td) are common. Thick beds generally thicken and then thin and fine laterally over about 300 m. Thin-bedded strata, in contrast, thin and fine negligibly over similar distances. In the distal part of the outer-bend levee (up to 700 m laterally away from the channel) strata consist predominantly of thin-bedded Tcd turbidites with a much lower sandstone-to-mudstone ratio (35:65). On the opposite side of the channel, inner-bend levee deposits are mudstone-rich, locally as low as 15:85, and consist mostly of thin-bedded, Tcd turbidites, although thicker-bedded, Ta-d turbidites are more common in the lower part of the section. Lateral thinning and fining of beds is more rapid than their outer-bend counterpart. Levee deposits of ICC3 comprise three stacked decametre-scale upward-thinning and -fining successions. Each is interpreted to record a depositional history consisting of lateral channel migration, levee deposition, channel filling, and distal levee deposition. During the early stage of increasing levee relief it is proposed that the termini of individual beds progressively backstep towards the channel margin resulting in an overall lateral thinning of the stratal profile. This interpretation notably contrasts the common assumption that levee morphology is the result of the vertical stacking of beds that dip. In addition to field studies, laboratory experiments were conducted to determine the depositional threshold of non-climbing ripple cross-stratification, which is common in levee strata of ICC3. It was determined that non-climbing ripples form when bed aggradation rates are less than 0.015 cm/sec, and most probably in flows made up of poorly sorted sediment.
6

Origin and Architecture of Deep-water Levee Deposits: Insight from the Ancient Rock Record and Experiments

Khan, Zishann 22 December 2011 (has links)
Although levee deposits make up a significant part of modern and ancient deep-marine slope systems, details of their internal lithological composition and stratal architecture remain poorly documented. At the Castle Creek study area, strata of the Neoproterozoic Isaac Formation (Windermere Supergroup) crop out superbly in a kilometre-scale section through a sinuous deep-water channel-levee system (ICC3). Levee deposits near the outer bend of the channel consist of sandstone-rich (sandstone-to-mudstone ratio of 68:42), medium- to thick-bedded turbidites interstratified with thinly-bedded turbidites. Structureless sandstone (Ta), planar laminated sandstone (Tb), non-climbing ripple cross-stratified sandstone (Tc) and massive and laminated siltstone (Td) are common. Thick beds generally thicken and then thin and fine laterally over about 300 m. Thin-bedded strata, in contrast, thin and fine negligibly over similar distances. In the distal part of the outer-bend levee (up to 700 m laterally away from the channel) strata consist predominantly of thin-bedded Tcd turbidites with a much lower sandstone-to-mudstone ratio (35:65). On the opposite side of the channel, inner-bend levee deposits are mudstone-rich, locally as low as 15:85, and consist mostly of thin-bedded, Tcd turbidites, although thicker-bedded, Ta-d turbidites are more common in the lower part of the section. Lateral thinning and fining of beds is more rapid than their outer-bend counterpart. Levee deposits of ICC3 comprise three stacked decametre-scale upward-thinning and -fining successions. Each is interpreted to record a depositional history consisting of lateral channel migration, levee deposition, channel filling, and distal levee deposition. During the early stage of increasing levee relief it is proposed that the termini of individual beds progressively backstep towards the channel margin resulting in an overall lateral thinning of the stratal profile. This interpretation notably contrasts the common assumption that levee morphology is the result of the vertical stacking of beds that dip. In addition to field studies, laboratory experiments were conducted to determine the depositional threshold of non-climbing ripple cross-stratification, which is common in levee strata of ICC3. It was determined that non-climbing ripples form when bed aggradation rates are less than 0.015 cm/sec, and most probably in flows made up of poorly sorted sediment.
7

Sedimentology, Stratigraphy, Architecture and Origin of Deep-water, Basin-floor Deposits: Middle and Upper Kaza Group, Windermere Supergroup, B.C., Canada

Terlaky, Viktor 08 January 2014 (has links)
Ancient basin-floor strata are exceptionally well exposed in the Neoproterozoic Windermere Supergroup in the southern Canadian Cordillera. Data from the Castle Creek outcrop, where strata of the upper Kaza Group crop out, and the Mt. Quanstrom outcrop, where the middle Kaza is exposed, form the main dataset for this study. The aim of this study is to describe and interpret the strata starting at the bed scale, followed by stratal element scale, lobe scale and ultimately fan scale. Strata of the Kaza Group comprise six sedimentary facies representing deposition from a variety of fluid and cohesive sediment gravity flows. These, in turn, populate seven stratal elements that are defined by their basal contact, cross-sectional geometry and internal facies distribution. The lithological characteristics of stratal elements vary little from proximal to more distal settings, but their relative abundance and stacking pattern do, which, then, forms the basis for modeling the internal architecture of lobes. Lobes typically comprise an assemblage of stratal elements, which then are systematically and predictably arranged in both space (along a single depositional transect) and time (stratigraphically upward). Lobes typically became initiated by channel avulsion. In the proximal part of the system scours up to several meters deep, several tens of meters wide are interpreted to have formed by erosion downflow of the avulsion node. Erosion also charged the flow with fine-grained sediment and on the lateral margins and downflow avulsion splays were deposited. Later flows then exploited the basin-floor topography and on the proximal basin-floor carved a feeder channel, which then fed a downflow depositional lobe. At the mouths of feeder channels flows became dispersed through a network of distributary channels that further downflow shallow and widen until eventually merging laterally in sandstone-rich terminal splays. During the lifespan of a single lobe the feeder channel remains fixed, but the distributary channel network and its associated terminal splays wander, causing them to stack and be intercalated laterally and vertically. Eventually an upstream avulsion terminates local sediment supply, causing a new lobe to be initiated elsewhere on the fan, and the process repeats.
8

Origin and Architecture of Deep-water Levee Deposits: Insight from the Ancient Rock Record and Experiments

Khan, Zishann 22 December 2011 (has links)
Although levee deposits make up a significant part of modern and ancient deep-marine slope systems, details of their internal lithological composition and stratal architecture remain poorly documented. At the Castle Creek study area, strata of the Neoproterozoic Isaac Formation (Windermere Supergroup) crop out superbly in a kilometre-scale section through a sinuous deep-water channel-levee system (ICC3). Levee deposits near the outer bend of the channel consist of sandstone-rich (sandstone-to-mudstone ratio of 68:42), medium- to thick-bedded turbidites interstratified with thinly-bedded turbidites. Structureless sandstone (Ta), planar laminated sandstone (Tb), non-climbing ripple cross-stratified sandstone (Tc) and massive and laminated siltstone (Td) are common. Thick beds generally thicken and then thin and fine laterally over about 300 m. Thin-bedded strata, in contrast, thin and fine negligibly over similar distances. In the distal part of the outer-bend levee (up to 700 m laterally away from the channel) strata consist predominantly of thin-bedded Tcd turbidites with a much lower sandstone-to-mudstone ratio (35:65). On the opposite side of the channel, inner-bend levee deposits are mudstone-rich, locally as low as 15:85, and consist mostly of thin-bedded, Tcd turbidites, although thicker-bedded, Ta-d turbidites are more common in the lower part of the section. Lateral thinning and fining of beds is more rapid than their outer-bend counterpart. Levee deposits of ICC3 comprise three stacked decametre-scale upward-thinning and -fining successions. Each is interpreted to record a depositional history consisting of lateral channel migration, levee deposition, channel filling, and distal levee deposition. During the early stage of increasing levee relief it is proposed that the termini of individual beds progressively backstep towards the channel margin resulting in an overall lateral thinning of the stratal profile. This interpretation notably contrasts the common assumption that levee morphology is the result of the vertical stacking of beds that dip. In addition to field studies, laboratory experiments were conducted to determine the depositional threshold of non-climbing ripple cross-stratification, which is common in levee strata of ICC3. It was determined that non-climbing ripples form when bed aggradation rates are less than 0.015 cm/sec, and most probably in flows made up of poorly sorted sediment.
9

Stratigraphic and Carbon Isotope Evolution of an Ediacaran Mixed Siliciclastic Deep-Marine Base-of-Slope System, First Isaac Carbonate, Windermere Supergroup, Canadian Cordillera, British Columbia.

Cochrane, Dylan 04 April 2018 (has links)
The first Isaac carbonate (FIC) is a mixed siliciclastic-carbonate base-of-slope succession in the Neoproterozoic Windermere Supergroup (WSG). Outstanding outcrop exposure at three study areas provided an excellent opportunity to observe the stratigraphic and isotopic evolution of an ancient deepwater mixed turbidite system. Based on lithological and stratal dimensions, the FIC can be subdivided into lower and upper parts suggesting temporal changes in patterns of sediment transport and deposition. δ13Ccarb also changes from -5.2‰ at the base of the FIC to 2.5‰ in the middle and then decreases to -6.3‰ at the top. Notably, the δ13Ccarb of primary cement in FIC strata is substantially more positive than most other Neoproterozoic deep-marine sections, suggesting the retention of their original shallow-marine isotopic signature. Nevertheless, this trend potentially correlates with the EN2 excursion in China and therefore the Gaskiers glaciation (~580 Ma), although better age control of WSG is needed to corroborate this correlation.
10

Origin and Architecture of Deep-water Levee Deposits: Insight from the Ancient Rock Record and Experiments

Khan, Zishann January 2012 (has links)
Although levee deposits make up a significant part of modern and ancient deep-marine slope systems, details of their internal lithological composition and stratal architecture remain poorly documented. At the Castle Creek study area, strata of the Neoproterozoic Isaac Formation (Windermere Supergroup) crop out superbly in a kilometre-scale section through a sinuous deep-water channel-levee system (ICC3). Levee deposits near the outer bend of the channel consist of sandstone-rich (sandstone-to-mudstone ratio of 68:42), medium- to thick-bedded turbidites interstratified with thinly-bedded turbidites. Structureless sandstone (Ta), planar laminated sandstone (Tb), non-climbing ripple cross-stratified sandstone (Tc) and massive and laminated siltstone (Td) are common. Thick beds generally thicken and then thin and fine laterally over about 300 m. Thin-bedded strata, in contrast, thin and fine negligibly over similar distances. In the distal part of the outer-bend levee (up to 700 m laterally away from the channel) strata consist predominantly of thin-bedded Tcd turbidites with a much lower sandstone-to-mudstone ratio (35:65). On the opposite side of the channel, inner-bend levee deposits are mudstone-rich, locally as low as 15:85, and consist mostly of thin-bedded, Tcd turbidites, although thicker-bedded, Ta-d turbidites are more common in the lower part of the section. Lateral thinning and fining of beds is more rapid than their outer-bend counterpart. Levee deposits of ICC3 comprise three stacked decametre-scale upward-thinning and -fining successions. Each is interpreted to record a depositional history consisting of lateral channel migration, levee deposition, channel filling, and distal levee deposition. During the early stage of increasing levee relief it is proposed that the termini of individual beds progressively backstep towards the channel margin resulting in an overall lateral thinning of the stratal profile. This interpretation notably contrasts the common assumption that levee morphology is the result of the vertical stacking of beds that dip. In addition to field studies, laboratory experiments were conducted to determine the depositional threshold of non-climbing ripple cross-stratification, which is common in levee strata of ICC3. It was determined that non-climbing ripples form when bed aggradation rates are less than 0.015 cm/sec, and most probably in flows made up of poorly sorted sediment.

Page generated in 0.0767 seconds