• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 75
  • 71
  • 46
  • 38
  • 18
  • 14
  • 11
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 800
  • 199
  • 116
  • 103
  • 95
  • 72
  • 71
  • 68
  • 67
  • 58
  • 57
  • 56
  • 54
  • 54
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A 3-D four-wing attractor and its analysis

Wang, Z, Sun, Y, van Wyk, BJ, Qi, G, van Wyk, MA 22 September 2009 (has links)
Abstract In this paper, several three dimensional (3-D) four-wing smooth quadratic autonomous chaotic systems are analyzed. It is shown that these systems have a number of similar features. A new 3-D continuous autonomous system is proposed based on these features. The new system can generate a four-wing chaotic attractor with less terms in the system equations. Several basic properties of the new system is analyzed by means of Lyapunov exponents, bifurcation diagrams and Poincare maps. Phase diagrams show that the equilibria are related to the existence of multiple wings.
12

Analysis and optimisation of passive flapping wing propulsion for micro aerial vehicles

Watman, Daniel John, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Flapping wing propulsion has the potential to revolutionise the field of Micro Aerial Vehicles (MAVs), but little is known about the effect of flapping motion on the performance of flapping wings. Prototype MAVs have achieved flight with passive flapping wings moving in a sinusoidal flapping motion, but the possible benefits of alternative flapping motions have not been studied in detail. This thesis presents the development of an Integrated Testing System (ITS), which allows the evaluation of flapping wing performance for different flapping motions. A detailed parametric study of the effect of flapping motion on wing performance is performed, and the optimal flapping motion for several passive flapping wings is determined by hardware-in-the-loop optimisation of two wing performance metrics. The developed ITS was able to automatically test a variety of passive flapping wings, and demonstrated precise control of the flapping motion and accurate and repeatable measurements of average lift force, mechanical power, and wing twist angle. The parametric study revealed that of the three flapping motions tested, the sinusoidal flapping motion generated the highest lift force, but a smoothed triangular motion was able to generate lift significantly more efficiently under load. The optimal flapping motion was successfully determined for three flapping wings, and was found to increase the loaded effciency of the wings by an average of 31% over a sinusoidal flapping motion. The determined optimal motion was almost identical for the three tested wings, and was found to strongly resemble the flapping motion of insects These findings demonstrate that significant improvements in the performance of passive flapping wings can be achieved by relatively minor variations of the flapping motion. This increased understanding will ideally lead to more efficient flapping wing MAVs with higher payloads, longer flight times, and improved performance.
13

The aerodynamic interaction of a rotating wheel and a downforce producing wing in ground effect

Diasinos, Sammy , Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The performance of current open wheeler race cars depends heavily on the effectiveness of the aerodynamic package of which the front wing and wheels make a significant contribution. Previous investigations have focused on the aerodynamic characteristics of each of these bodies in isolation. Investigations that have considered both working in unison have conflictingly reported that the wheel presence aids or hinders the wing???s performance while the wheel???s aerodynamic performance has been neglected. In order to obtain a more thorough understanding of the interaction of a wing and wheel, experimental results were used to validate a computational model used to investigate a wing and wheel in isolation and in combination. The combined wing and wheel investigation demonstrated that three main interactions can occur, depending on the selection of wing span, angle of attack and height used, while the wheel width and track were found to have little influence. The three interacting states differ in the path that the main and secondary wing vortices take around the wheel and the subsequent variation in the combined wake structure. In general, the wing in the presence of the wheel reduced the wing???s ability to generate downforce by up to 45% due to the high pressure regions generated forward of the wheel. This was also found to alleviate the adverse pressure gradients experienced by the wing, and also reduce the drag by up to 70%. For this reason, the downforce loss phenomenon was observed to occur at a height 0.08c to 0.32c lower in comparison to the same wing in isolation, dependant on the wing span. Wheel lift and drag values were also observed to reduce in the presence of a wing by up to 65% and 38% respectively due to the influence of the wing???s flow structures have on the wake of the wheel. As a result,it was shown that the combined wing and wheel downforce and drag optima differed by up to 75% and 25% respectively to those which would be estimated if the two bodies were investigated individually and the results summed highlighting the importance of investigating these two bodies in unison.
14

Pinero's Dramen Studien über Motive, Charaktere und Technik /

Stöcker, Wilibald, January 1911 (has links)
Thesis--Marburg. / "Diese Abhandlung erscheint auch in der Anglia, Zeitschrift für englische Philologie, Bd. 35, 1/2." Vita. Includes bibliographical references (p. 1-3).
15

Yung Wing (1828-1912) and the late Qing reform movement Rong Hong yu wan Qing wei xin yun dong /

Seto, Mei-han. January 1999 (has links)
Thesis (M.A.)--University of Hong Kong, 1999. / Includes bibliographical references. Also available in print.
16

The passive control of shock-wave/boundary-layer interactions

Gibson, Thomas Mark January 1997 (has links)
No description available.
17

A study of pressure fluctuations caused by vortex breakdown

Jaworski, Artur Jerzy January 1996 (has links)
No description available.
18

Swept and unswept separation bubbles

Barkey Wolf, Frederik Dirk January 1987 (has links)
The effect of sweep on separation bubbles as occurring in the subsonic flows past thin flat plates with rectangular leading edges has been studied experimentally. The distance between separation and reattachment, at high Reynolds number, was about 5.5 times the plate thickness in the flow region undisturbed by end effects. This distance was independent of sweepback for sweep angles up to and including 45<SUP>o</SUP>. The chordwise distribution of a static-pressure coefficient and a coefficient of the intensity of the static-pressure fluctuations, both measured on the surface of the plate and based upon the free-stream velocity component normal to the leading edge, were independent of the sweep angle up to and including 30<SUP>o</SUP> to a first approximation. The spectra of the static-pressure fluctuations, however, displayed some qualitative changes with increasing sweep angle. The distribution of a coefficient of the chordwise skin-friction component, based upon the free-stream velocity component normal to the leading edge, was independent of sweep up to and including 30<SUP>o</SUP> to a crude first approximation. The chordwise velocity profiles non-dimensionalised by the local external chordwise velocity component, were independent of sweep up to and including 45<SUP>o</SUP> in the separation bubble but downstream of reattachment small but persistent changes occurred with increasing sweep angle. Smoke-flow visualisations in the swept and the unswept flow at low Reynolds number displayed the presence of typical vortex loops in the reattachment region, many of which broke up and were partially entrained into the separation bubble.
19

Návrh křídla letounu UAV v kategorii do 600 kg / Wing design of UAV aircraft

Chabada, Martin January 2021 (has links)
The main aim of the this diploma thesis is the wing design of the UAV aircraft, including the appropriate material choice, calculation of the wing load and also strength analysis. Other goals include the design of the location and volume of fuel tanks, as well as the design of wingspan reduction after landing.
20

Design of a Scaled Flight Test Vehicle Including Linear Aeroelastic Effects

Eger, Charles Alfred Gaitan 23 May 2013 (has links)
A procedure for the design of a scaled aircraft using linear aeroelastic scaling is developed and demonstrated. Previous work has shown the viability in matching scaled structural frequencies and mode shapes in order to achieve consistent linear scaling of simple models. This methodology is adopted for use on a high fidelity joined-wing aircraft model. Natural frequencies and mode shapes are matched by optimizing structural ply properties and nonstructural mass. A full-scale SensorCraft concept developed by AFRL and Boeing serves as the target model, and a 1/9th span geometrically scaled remotely piloted vehicle (RPV) serves as the initial design point. The aeroelastic response of the final design is verified against the response of the full-scale model. Reasonable agreement is seen in both aeroelastic damping and frequency for a range of flight velocities, but some discrepancy remains in accurately capturing the flutter velocity. / Master of Science

Page generated in 0.0454 seconds