• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of planting density on spike size and grain yield in five winter wheat cultivars

Wang, Shi Ping, 1956- 09 November 1990 (has links)
Graduation date: 1991
2

Long-term effects of tillage, nitrogen, and rainfall on winter wheat yields

Camara, Kelli Marie 07 December 1999 (has links)
Winter wheat is commonly grown in dryland cropping systems in the Pacific Northwest region of semi-arid eastern Oregon. For agronomic, economic, and environmental reasons, it is important to understand the long-term sustainability of such dryland systems. The objective of this study was to evaluate the long-term effects of tillage, nitrogen (N), soil depth, and the influence of precipitation on wheat yields in dry land cropping systems of eastern Oregon. Data were taken from the Tillage/Fertility or "Balenger" experiment, which was established in 1940 by a Soil Conservation employee, and is one of the oldest replicated research experiments in the western United States. The experiment consisted of a winter wheat-summer fallow rotation arranged in a randomized block design with three replications. The main plot consisted of three primary tillage treatments (moldboard plow, offset disk, and subsurface sweep) and subplots consisted of six nitrogen treatments that changed over time and most recently ranged from 0 to 180 kg ha�����. Soil depth of individual plots ranged from 1.2- to 3.0-m. The study was divided into four main time periods (1940-1951, 1952-1961, 1962-1987, and 1988-1997) within which experimental treatments were consistently maintained. The moldboard plow tillage treatment significantly increased yields by more than 300 kg ha����� over the subsurface sweep tillage treatment in all four time periods. Yields with the moldboard plow system were significantly higher than with the offset disk system in time periods 3 and 4. The same trend was evident for mean yield in time periods 1 and 2, but differences were not statistically significant. In time periods 1, 2, and 3, mean yields were higher with the offset disk tillage treatment than the subsurface sweep tillage system, although the differences were not statistically significant. In time period 4, mean yield was higher for the subsurface sweep system than the offset disk treatment, but differences were not statistically significantly. The optimum amount of N for winter wheat differed from year to year, within, and between experiment periods. This was apparently in response to rainfall patterns and improved management factors, specifically more N responsive semi-dwarf varieties. For time period 1, the maximum fertilizer rate was 11.2 kg N ha�����, which tended to produce higher mean grain yields than an application rate of than 0 kg N ha�����, regardless of the quantity or distribution of precipitation. For time period 2, the maximum fertilizer rate was 33.7 kg N ha�����, which produced significantly higher grain yields than an application rate of than 0 kg N ha�����, regardless of the quantity or distribution of precipitation. For time period 3 (1962-1987), which had below-normal annual and growing season precipitation, yield increased with the addition of 45 kg N ha�����. For time period 4 (1988- 1997), which had above-normal annual and growing season precipitation, yield increased with the addition of 90 kg N ha�����. Yield increases at greater rates of N were insignificant. For time periods 3 and 4, maximum mean yield was obtained at an application rate of 135 kg N ha�����. The response of wheat yield to N during dry years was greater for deep (> 2.8 m) soils than for shallow soils. In addition to amount, rainfall distribution during the winter (October to March) and growing (April to June) season significantly affected yield. Results demonstrate the importance of rainfall and nitrogen to winter wheat production in eastern Oregon, and that the most environmentally sound tillage systems are not necessarily the most profitable from farmers' point of view. / Graduation date: 2000
3

Possible association of grain protein content, harvest index and biological yield in winter wheat populations

Costa, Jose Maria 29 November 1990 (has links)
A negative relation between grain protein content and grain yield is frequently observed in wheat (Triticum aestivum L. em Thell) i.e. as grain yield increases, grain protein decreases. It has been suggested that the inverse relation between grain yield and protein is in part the result of developing high yielding semi-dwarf wheat cultivars with an increased harvest index. This investigation was undertaken to determine the nature of the possible association of grain yield and protein content as influenced by harvest index, biological yield, plant height and kernel weight in winter wheat populations grown in Oregon. Progenies derived from three crosses of winter wheat were solid-planted in two environments during two seasons. Phenotypic correlations showed a moderate negative association of grain protein content with both grain yield and harvest index. The magnitude of the genetic correlations suggested the presence of genetic relationships among these traits. Selection for harvest index among these crosses could cause a correlated reduction of grain protein content. To investigate if the relationships between grain protein content and selected plant growth traits were similar when grown under space-planted and solid seeded stands, progenies of two winter wheat crosses were evaluated during two seasons. Performance for grain yield and grain protein content was different under contrasting sowing densities as values were not correlated between sowing densities. This indicates the need to evaluate these traits in solid-seeded stands. Harvest index, as well as plant height and heading date, could be effectively selected under space-planted or solid seeded conditions. Associations among traits were reliably estimated in space-planted stands. To evaluate the effect on grain protein content when grain yield and harvest index are modified, the plant growth regulator Paclobutrazol was applied to selected winter wheat genotypes under field and greenhouse conditions. Paclobutrazol increased grain yield and harvest index values of all genotypes in the greenhouse, while only some genotypes improved these traits under field conditions. Grain protein content, however, remained unchanged. Higher grain yields were obtained in both greenhouse and field experiments. / Graduation date: 1991

Page generated in 0.0898 seconds