• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Orthopaedic surgical skills: examining how we train and measure performance in wire navigation tasks

Long, Steven A. 01 May 2019 (has links)
Until recently, the model for training new orthopaedic surgeons was referred to as “see one, do one, teach one”. Resident surgeons acquired their surgical skills by observing attending surgeons in the operating room and then attempted to replicate what they had observed on new patients, under the supervision of more experienced surgeons. Learning in the operating is an unideal environment to learn because it adds more time to surgical procedures and puts patients at an increased risk of having surgical errors occur during the procedure. Programs are slowly beginning to switch to a model that involves simulation-based training outside of the operating room. Wire navigation is one key skill in orthopaedics that has traditionally been difficult for programs to train on in a simulated environment. Our group has developed a radiation free wire navigation simulator to help train residents on this key skill. For simulation training to be fully adopted by the orthopaedic community, strong evidence that it is beneficial to a surgeon’s performance must first be established. The aim of this work is to examine how simulation training with the wire navigation simulator can be used to improve a resident’s wire navigation performance. The work also examines the metrics used to evaluate a resident’s performance in a simulated environment and in the operating room to understand which metrics best capture wire navigation performance. In the first study presented, simulation training is used to improve first year resident wire navigation performance in a mock operating room. The results of this study show that depending on how the training was implemented, residents were able to significantly reduce their tip-apex distance in comparison with a group that had received a simple didactic training. The study also showed that performance on the simulator was correlated with performance in this operating room. This study helps establish the transfer validity of the simulator, a key component in validating a simulation model. The second study presents a model for using the simulator as a platform on which a variety of wire navigation procedures could be developed. In this study, the simulator platform, originally intended for hip wire navigation, was extended and modified to train residents in placing a wire across the iliosacral joint. A pilot study was performed with six residents from the University of Iowa to show that this platform could be used for training the other applications and that it was accepted by the residents. The third study examined wire navigation performance in the operating room. In this study, a new metric of performance was developed that measures decision making errors made during a wire navigation procedure. This new metric was combined with the other metrics of wire navigation performance (tip-apex distance) into a composite score. The composite score was found to have a strong correlation (R squared = 0.79) with surgical experience. In the final study, the wire navigation simulator was taken to a national fracture course to collect data on a large sample of resident performance. Three groups were created in this study, a baseline group, a group that received training on the simulator, and a third group that observed the simulator training. The results of this study showed that the training could improve the overall score of the residents compared to the baseline group. The overall distribution from resident performance between groups also shows that a large portion of residents that did not receive training came in below what might be considered as competent performance. Further studies will evaluate how this training impacts performance in the operating room.
2

Developing and implementing a computer vision based surgical simulator for hip wire navigation

Long, Steven A. 01 May 2016 (has links)
Orthopaedic residency training is in the midst of a paradigm shift. Recent mandates from the Residency Review Committee (RRC) for Orthopaedic Surgery and the American Board of Orthopaedic Surgery (ABOS) are requiring that programs must provide structured motor skills training to first year residents. Although other surgical fields such as laparoscopic surgery have been using simulation tools to train incoming residents for over a decade, the orthopaedic field has lagged behind in developing these training tools. Given the need for orthopaedic training devices and the lack of currently available solutions to residency programs, this work has focused on developing a surgical simulator for the task of hip guide wire navigation. Hip wire navigation was targeted for this work because it is a core competency skill for surgical residents and few options currently exist for training residents on this task. Much of this work focuses on the development of the wire navigation simulator. The simulator has six main components; a single camera interfaced with a Raspberry Pi (a credit-card sized computer), a series of three mirrors, a surrogate femur, a guide wire driver, a laser etched guide wire, and a laptop. These components interact to create virtual radiograph images that the resident can use to place the guide wire inside the bone. The goal in developing this simulator is to provide a platform which enables residents to acquire the skill of hip wire navigation in a safe environment and eventually transfer that skill into the operating room. Assessment of the simulator has shown that the guide wire can be located in bone within 1.5mm of its true position and less than a degree of its true trajectory. This level of accuracy is sufficient for providing residents with a training tool to practice their technique on. In training with resident surgeons, initial trends show that practicing with the simulator can result in an improvement in one’s technique. Residents who have trained with the simulator show a decrease in both the amount of radiographic images required to complete the procedure and the amount of time required to perform the procedure in a pseudo operating room environment. While more work is needed to be done to show the significance of this trend, this work has achieved its goal of providing residents with a safe platform for practicing the task of hip guide wire navigation.

Page generated in 0.0741 seconds