Spelling suggestions: "subject:"aireless"" "subject:"fireless""
101 |
Characterizing interference in wireless mesh networks.January 2007 (has links)
Hui, Ka Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 123-126). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction / Motivation --- p.1 / Chapter 2 --- Literature Review --- p.6 / Chapter 2.1 --- Introduction --- p.6 / Chapter 2.2 --- The Capacity-Finding Problem --- p.6 / Chapter 2.3 --- Interference Models --- p.8 / Chapter 2.4 --- Considering Interference in the Capacity-Finding Problem with Perfect Scheduling --- p.9 / Chapter 2.4.1 --- Conflict Graph --- p.10 / Chapter 2.4.2 --- Independent Set Constraints --- p.11 / Chapter 2.4.3 --- Row Constraints --- p.11 / Chapter 2.4.4 --- Clique Constraints --- p.12 / Chapter 2.4.5 --- Using the physical model --- p.13 / Chapter 2.5 --- Considering Interference in the Capacity-Finding Problem with Random Access --- p.15 / Chapter 2.6 --- Chapter Summary --- p.17 / Chapter 3 --- Partial Interference - Basic Idea --- p.18 / Chapter 3.1 --- Introduction --- p.18 / Chapter 3.2 --- Deficiencies in Previous Models --- p.18 / Chapter 3.2.1 --- Multiple Interferers --- p.19 / Chapter 3.2.2 --- Non-binary Behavior of Interference --- p.19 / Chapter 3.2.3 --- Impractical Perfect Scheduling --- p.21 / Chapter 3.3 --- Refining the Relationship between Interference and Throughput Degradation --- p.21 / Chapter 3.4 --- Capacity Gain by Exploiting Partial Interference . --- p.23 / Chapter 3.5 --- Chapter Summary --- p.28 / Chapter 4 --- Partial Interference in 802.11 --- p.29 / Chapter 4.1 --- Introduction --- p.29 / Chapter 4.2 --- The 802.11 Model --- p.29 / Chapter 4.2.1 --- Assumptions --- p.30 / Chapter 4.2.2 --- Transmission Probability Calculation --- p.31 / Chapter 4.2.3 --- Packet Corruption Probability Calculation --- p.34 / Chapter 4.2.4 --- Loading Calculation --- p.35 / Chapter 4.2.5 --- Summary --- p.36 / Chapter 4.3 --- Some Analytical Results --- p.37 / Chapter 4.4 --- A TDM A/CDMA Analogy --- p.40 / Chapter 4.5 --- Admissible (Stability) Region --- p.42 / Chapter 4.6 --- Chapter Summary --- p.44 / Chapter 5 --- Partial Interference in Slotted ALOHA --- p.45 / Chapter 5.1 --- Introduction --- p.45 / Chapter 5.2 --- The Finite-Link Slotted ALOHA Model --- p.46 / Chapter 5.2.1 --- Assumptions --- p.46 / Chapter 5.2.2 --- Stability of Slotted ALOHA --- p.46 / Chapter 5.3 --- Stability Region of 2-Link Slotted ALOHA under Partial Interference --- p.47 / Chapter 5.4 --- Some Illustrations --- p.50 / Chapter 5.5 --- Generalization to the M-Link Case --- p.53 / Chapter 5.6 --- Chapter Summary --- p.58 / Chapter 6 --- FRASA --- p.59 / Chapter 6.1 --- Introduction --- p.59 / Chapter 6.2 --- The FRASA Model --- p.60 / Chapter 6.3 --- Validation of the FRASA Model --- p.66 / Chapter 6.3.1 --- Simulation Results --- p.66 / Chapter 6.3.2 --- Comparison to Previous Bounds --- p.72 / Chapter 6.4 --- Convex Hull Bound --- p.75 / Chapter 6.5 --- p-Convexity --- p.80 / Chapter 6.6 --- Supporting Hyperplane Bound --- p.86 / Chapter 6.7 --- Extension to Partial Interference --- p.89 / Chapter 6.7.1 --- FRASA under Partial Interference --- p.90 / Chapter 6.7.2 --- Convex Hull Bound --- p.93 / Chapter 6.7.3 --- p-Convexity --- p.97 / Chapter 6.7.4 --- Supporting Hyperplane Bound --- p.101 / Chapter 6.8 --- Chapter Summary --- p.102 / Chapter 7 --- Conclusion and Future Works --- p.110 / Chapter 7.1 --- Conclusion --- p.110 / Chapter 7.2 --- Future Works --- p.111 / Chapter A --- Proof of (4.13) in Chapter 4 --- p.113 / Bibliography --- p.123
|
102 |
Sistema de identificação e localização baseado em dispositivos de comunicações sem fiosOsório, Ricardo Manuel Moreira Marques January 2011 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Telecomunicações). Universidade do Porto. Faculdade de Engenharia. 2011
|
103 |
Autenticação de redes Wi-Fi recorrendo ao DNSSECMaia, Pedro Miguel Moreira January 2009 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 2009
|
104 |
Sistema de instrumentação distribuída suportado por rede sem fiosPinheiro, Isabel Maria Gonçalves Fernandes Vaz January 2008 (has links)
Tese de mestrado. Engenharia Electrotécnica e de Computadores (Área de especialização de Automação industrial). Faculdade de Engenharia. Universidade do Porto. 2008
|
105 |
Wireless communication over NFC with a constrained resouce deviceRaposo, André Filipe Mendes January 2010 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 2010
|
106 |
Production Control &=and LogisticsCorreia, Pedro Osvaldo Oliveira Loureiro dos Santos January 2008 (has links)
Estágio realizado na Faurecia - Assentos de Automóvel, Ld.ª e orientado pelo Eng.ª Alexandra Ferrão / Tese de mestrado integrado. Engenharia Industrial e Gestão. Faculdade de Engenharia. Universidade do Porto. 2008
|
107 |
Capacity bounds for small-world and dual radio networksCosta, Rui Filipe Mendes Alves da January 2007 (has links)
Tese de Mestrado. Informática. Faculdade de Ciências. Universidade do Porto. 2007
|
108 |
QoS Abstraction Layer in 4G Access NetworksCarneiro, Gustavo João Alves Marques January 2005 (has links)
Tese de Mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto. 2005
|
109 |
Development of a detection system using a wireless sensor networkMaciel, Bernardo Arede Amaro January 2008 (has links)
Estágio realizado no Royal Institute of Technology (KTH), Stockholm, Sweden e orientado pelo Prof. Doutor Karl Henrik Johansson / Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Automação. Faculdade de Engenharia. Universidade do Porto. 2008
|
110 |
Energy optimization for wireless sensor networks using hierarchical routing techniquesAbidoye, Ademola Philip January 2015 (has links)
Philosophiae Doctor - PhD / Wireless sensor networks (WSNs) have become a popular research area that is widely
gaining the attraction from both the research and the practitioner communities due to their
wide area of applications. These applications include real-time sensing for audio delivery,
imaging, video streaming, and remote monitoring with positive impact in many fields such
as precision agriculture, ubiquitous healthcare, environment protection, smart cities and
many other fields. While WSNs are aimed to constantly handle more intricate functions
such as intelligent computation, automatic transmissions, and in-network processing, such
capabilities are constrained by their limited processing capability and memory footprint as
well as the need for the sensor batteries to be cautiously consumed in order to extend their
lifetime. This thesis revisits the issue of the energy efficiency in sensor networks by
proposing a novel clustering approach for routing the sensor readings in wireless sensor
networks. The main contribution of this dissertation is to 1) propose corrective measures to
the traditional energy model adopted in current sensor networks simulations that
erroneously discount both the role played by each node, the sensor node capability and
fabric and 2) apply these measures to a novel hierarchical routing architecture aiming at
maximizing sensor networks lifetime. We propose three energy models for sensor network:
a) a service-aware model that account for the specific role played by each node in a sensor
network b) a sensor-aware model and c) load-balancing energy model that accounts for the sensor node fabric and its energy footprint. These two models are complemented by a load balancing
model structured to balance energy consumption on the network of cluster heads
that forms the backbone for any cluster-based hierarchical sensor network. We present two
novel approaches for clustering the nodes of a hierarchical sensor network: a) a distanceaware
clustering where nodes are clustered based on their distance and the residual energy
and b) a service-aware clustering where the nodes of a sensor network are clustered
according to their service offered to the network and their residual energy. These
approaches are implemented into a family of routing protocols referred to as EOCIT
(Energy Optimization using Clustering Techniques) which combines sensor node energy
location and service awareness to achieve good network performance. Finally, building
upon the Ant Colony Optimization System (ACS), Multipath Routing protocol based on
Ant Colony Optimization approach for Wireless Sensor Networks (MRACO) is proposed
as a novel multipath routing protocol that finds energy efficient routing paths for sensor
readings dissemination from the cluster heads to the sink/base station of a hierarchical
sensor network. Our simulation results reveal the relative efficiency of the newly proposed
approaches compared to selected related routing protocols in terms of sensor network
lifetime maximization.
|
Page generated in 0.0586 seconds