• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 5
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 74
  • 53
  • 29
  • 28
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Design and Optimization of Wireless Networks for Large Populations / Planification et optimisation des réseaux sans fil pour des grandes populations

Silva Allende, Alonso Ariel 07 June 2010 (has links)
La croissance explosive des réseaux sans fil et l’augmentation du nombre de dispositifs sans fil ont soulevé de nombreuses difficultés techniques dans la planification et l’analyse de ces réseaux. Nous utilisons la modélisation continue, utile pour la phase initiale de déploiement et l’analyse à grande échelle des études régionales du réseau. Nous étudions le problème de routage dans les réseaux ad hoc, nous définissons deux principes d’optimisation du réseau: le problème de l’utilisateur et du système. Nous montrons que les conditions d’optimalité d’un problème d’optimisation construit d’une manière appropriée coïncide avec le principe de l’optimisation de l’utilisateur. Pour fonctions de coût différentes, nous résolvons le problème de routage pour les antennes directionnelles et omnidirectionnelles. Nous trouvons également une caractérisation des voies du coût minimum par l’utilisation extensive du Théorème de Green dans le cas d’antennes directionnelles. Dans de nombreux cas, la solution se caractérise par une équation aux dérivés partielles. Nous proposons l’analyse numérique par éléments finis qui donne les limites de la variation de la solution par rapport aux données. Lorsque nous permettons la mobilité des origines et destinations, on trouve la quantité optimale de relais actif. Dans les réseaux MIMO, nous montrons que, même lorsque la chaîne offre un nombre infini de degrés de liberté, la capacité est limitée par le rapport entre la taille du réseau d’antennes, la station de base, la position des mobiles et la longueur d’onde du signal. Nous constatons également l’association optimale mobile pour différentes politiques et distributions des utilisateurs. / The growing number of wireless devices and wireless systems present many challenges on the design and operation of these networks. We focus on massively dense ad hoc networks and cellular systems. We use the continuum modeling approach, useful for the initial phase of deployment and to analyze broad-scale regional studies of the network. We study the routing problem in massively dense ad hoc networks, and similar to the work of Nash, and Wardrop, we define two principles of network optimization: user- and system-optimization. We show that the optimality conditions of an appropriately constructed optimization problem coincides with the user-optimization principle. For different cost functions, we solve the routing problem for directional and omnidirectional antennas. We also find a characterization of the minimum cost paths by extensive use of Green’s theorem in directional antennas. In many cases, the solution is characterized by a partial differential equation. We propose its numerical analysis by finite elements method which gives bounds in the variation of the solution with respect to the data. When we allow mobility of the origin and destination nodes, we find the optimal quantity of active relay nodes. In Network MIMO systems and MIMO broadcast channels, we show that, even when the channel offers an infinite number of degrees of freedom, the capacity is limited by the ratio between the size of the antenna array at the base station and the mobile terminals position and the wavelength of the signal. We also find the optimal mobile association for the user- and system-optimization problem under different policies and distributions of the users.
52

Wireless video sensor network and its applications in digital zoo

Karlsson, Johannes January 2010 (has links)
Most computing and communicating devices have been personal computers that were connected to Internet through a fixed network connection. It is believed that future communication devices will not be of this type. Instead the intelligence and communication capability will move into various objects that surround us. This is often referred to as the "Internet of Things" or "Wireless Embedded Internet". This thesis deals with video processing and communication in these types of systems. One application scenario that is dealt with in this thesis is real-time video transmission over wireless ad-hoc networks. Here a set of devices automatically form a network and start to communicate without the need for any previous infrastructure. These devices act as both hosts and routers and can build up large networks where they forward information for each other. We have identified two major problems when sending real-time video over wireless ad-hoc networks. One is the reactive design used by most ad-hoc routing protocols. When nodes move some links that are used in the communication path between the sender and the receiver may disappear. The reactive routing protocols wait until some links on the path breaks and then start to search for a new path. This will lead to long interruptions in packet delivery and does not work well for real-time video transmission. Instead we propose an approach where we identify when a route is about to break and start to search for new routes before this happen. This is called a proactive approach. Another problem is that video codecs are very sensitive for packet losses and at the same time the wireless ad-hoc network is very error prone. The most common way to handle lost packets in video codecs is to periodically insert frames that are not predictively coded. This method periodically corrects errors regardless there has been an error or not. The method we propose is to insert frames that are not predictively coded directly after a packet has been lost, and only if a packet has been lost. Another area that is dealt with in this thesis is video sensor networks. These are small devices that have communication and computational capacity, they are equipped with an image sensor so that they can capture video. Since these devices in general have very limited resources in terms of energy, computation, communication and memory they demand a lot of the video compression algorithms used. In standard video compression algorithms the complexity is high for the encoder while the decoder has low complexity and is just passively controlled by the encoder. We propose video compression algorithms for wireless video sensor networks where complexity is reduced in the encoder by moving some of the image analysis to the decoder side. We have implemented our approach on actual low-power sensor nodes to test our developed algorithms. Finally we have built a "Digital Zoo" that is a complete system including a large scale outdoor video sensor network. The goal is to use the collected data from the video sensor network to create new experiences for physical visitors in the zoo, or "cyber" visitors from home. Here several topics that relate to practical deployments of sensor networks are addressed.
53

Implementation and Experimental Evaluation of Wireless Ad hoc Routing Protocols

Lundgren, Henrik January 2005 (has links)
A wireless ad hoc network consists of a number of mobile nodes that temporarily form a dynamic infrastructure-less network. New routing protocols that can adapt to the frequent topology changes induced by node mobility and varying link qualities are needed. During the last decade dozens of different ad hoc routing protocols have been proposed, optimized and partially compared, mainly through simulation studies. This thesis takes an experimental approach to the evaluation of ad hoc routing protocols. We argue that real world experiments are needed in order to complement simulation studies, and to gain practical experience and insights that can provide feedback to routing protocol design and existing simulation models. For example, we discovered a performance discrepancy for the AODV protocol between real world experiments and corresponding simulation studies. This so called ``communication gray zone'' problem was explored and countermeasures were implemented. As a result we could eliminate this performance problem to a large extent. We have implemented a software-based testbed called APE to carry out efficient and systematic experimental evaluation of ad hoc routing protocols. Experiments with up to 37 participating ad hoc nodes have demonstrated APE's ability to scale efficiently and assess repeatability between test runs. APE is part of our methodology for test repeatability in a real world ad hoc routing protocol testbed. It addresses the repeatability issue induced by stochastic factors like the radio environment and node mobility. Using APE, we have performed a systematic experimental evaluation of three ad hoc routing protocols (AODV, OLSR and LUNAR). Our results show that TCP does not work satisfactorily even in very small networks with limited mobility.
54

Real-Time and Reliable Communication in Wireless Sensor and Actor Networks

Gungor, Vehbi Cagri 08 1900 (has links)
Wireless Sensor and Actor Networks (WSANs) are composed of heterogeneous nodes referred to as sensors and actors. Sensors are low-cost, low-power, multi-functional devices that communicate untethered in short distances. Actors collect and process sensor data and perform appropriate actions on the environment. Hence, actors are resource-rich devices equipped with higher processing and transmission capabilities, and longer battery life. In WSANs, the collaborative operation of the sensors enables the distributed sensing of a physical phenomenon. After sensors detect an event in the deployment field, the event data is distributively processed and transmitted to the actors, which gather, process, and eventually reconstruct the event data. WSANs can be considered a distributed control system designed to react to sensor information with an effective and timely action. For this reason, in WSANs it is important to provide real-time coordination and communication to guarantee timely execution of the right actions. The energy efficiency of the networking protocols is also a major concern, since sensors are resource-constrained devices. Hence, the unique characteristics and challenges coupled with the limitations of wireless environments call for novel networking protocols for WSANs. The objective of this research is to develop new communication protocols to support real-time and reliable event data delivery with minimum energy consumption in WSANs. The proposed solutions dynamically adjust their protocol configurations to adapt to the heterogeneous characteristics of WSANs. Specifically, the interactions between contention resolution and congestion control mechanisms as well as the physical layer effects in WSANs are investigated. Next, a real-time and reliable transport protocol is proposed to achieve reliable and timely event detection with congestion avoidance in WSANs. In addition, a resource-aware and link-quality-based routing protocol is presented to address energy limitations and link quality variations in WSANs. Finally, the electric utility automation applications of WSANs are presented and the propagation characteristics of wireless channel in different utility environments are investigated.
55

Δρομολόγηση με βάση πολλαπλά κόστη σε ασύρματα αδόμητα δίκτυα / Multicost routing in wireless ad hoc networks

Παπαγεωργίου, Χρήστος 25 January 2010 (has links)
Μέχρι σήμερα στη δρομολόγηση στα ασύρματα αδόμητα δίκτυα λαμβάνεται ως κριτήριο ένα μοναδιαίο μέγεθος για κάθε σύνδεσμο του δικτύου, το οποίο αναπαριστά το κόστος της μετάδοσης πάνω στον συγκεκριμένο σύνδεσμο. Στη δρομολόγηση με βάση πολλαπλά κριτήρια η βασική ιδέα είναι ότι σε κάθε σύνδεσμο ανατίθεται ένα διάνυσμα από παραμέτρους-κόστη με βάση το οποίο προκύπτει και ένα αντίστοιχο διάνυσμα για κάθε μονοπάτι. Για κάθε ζευγάρι κόμβων αποστολέα-παραλήπτη γίνεται καταρχήν η εύρεση όλων των υποψήφιων για χρήση μονοπατιών. Τα υποψήφια μονοπάτια, που λαμβάνονται υπόψη κατά τη διαδικασία επιλογής, έχουν την ιδιότητα να είναι μη-κυριαρχημένα μεταξύ τους. Στη συνέχεια εφαρμόζεται στο σύνολο των μη-κυριαρχημένων μονοπατιών μια συνάρτηση που συνδυάζοντας τις συνιστώσες του κάθε διανύσματος παράγει το κόστος χρήσης κάθε μονοπατιού και έτσι το μονοπάτι με το ελάχιστο κόστος επιλέγεται για χρήση. Στα πλαίσια της εργασίας, καταρχήν μελετήθηκε ο αλγόριθμος δρομολόγησης με πολλαπλά κόστη χρησιμοποιώντας παραμέτρους-κόστη σχετικές με την ενέργεια, όπως η τρέχουσα διαθέσιμη ενέργεια στους κόμβους και η ισχύς μετάδοσής τους. Στη συνέχεια στις παραμέτρους προστέθηκε και η παρεμβολή που δημιουργείται από τη μετάδοση πάνω σε ένα σύνδεσμο. Τα αποτελέσματα των προσομοιώσεων έδειξαν ότι ο αλγόριθμος δρομολόγησης με πολλαπλά κόστη, σε σχέση με τον ελάχιστου μήκους διαδρομής, κατανέμει πιο ομοιόμορφα την κίνηση στο δίκτυο, επιμηκύνει τον χρόνο ζωής του δικτύου και αυξάνει το ποσοστό των παραδιδόμενων πακέτων. Στο επόμενο στάδιο της εργασίας έγινε μια κατανεμημένη υλοποίηση του αλγορίθμου δρομολόγησης με πολλαπλά κόστη, που επιπλέον λαμβάνει υπόψη την κινητικότητα των κόμβων του δικτύου, η οποία και πάλι φάνηκε να υπερέχει έναντι πιο παραδοσιακών πρακτικών. Τέλος η ιδέα της δρομολόγησης με πολλαπλά κόστη εφαρμόστηκε για τη λύση του προβλήματος ενεργο-αποδοτικής πολλαπλής ή ολικής εκπομπής (multicasting ή broadcasting, αντίστοιχα). Στόχος ήταν να βρεθεί η βέλτιστη ενεργο-αποδοτικά ακολουθία συνδέσμων πάνω στους οποίους πρέπει να γίνει μετάδοση ενός πακέτου προκειμένου να υλοποιηθεί η επιθυμητή εκπομπή. Σαν παράμετροι-κόστη χρησιμοποιήθηκαν η τρέχουσα διαθέσιμη ενέργεια και η ισχύς μετάδοσης των κόμβων. Τα αποτελέσματα δείχνουν σαφή υπεροχή του αλγορίθμου με πολλαπλά κόστη έναντι παραδοσιακών λύσεων τόσο για πολλαπλή εκπομπή όσο και για ολική εκπομπή. / Until now, routing in wireless ad hoc networks has been studied by taking into account a single scalar metric for every network link, representing the cost of transmitting through this link. In multicost routing a vector of cost parameters is assigned to each link, based on which a respective cost vector is produced for every path in the network. For every source-destination pair all the candidate paths are initially calculated that are non-dominated to each other. At the cost vectors of the candidate paths, an optimization function is applied in order to produce a cost for each path based on which the selection of the optimal one is made. In the present thesis multicost routing in wireless ad hoc networks was studied initially using as cost parameters the node residual energy and transmission power. As a next step the interference cause by the transmission of each link was added to the cost vectors assigned to each network link. The simulation results showed that multicost routing in comparison to traditional routing practices achieves more uniform traffic distribution and energy consumption in the network, prolongs the network lifetime and increases the percentage of the packets that are successfully delivered to their destinations. Expanding these ideas, the multicost routing algorithm was next implemented in a fully distributed fashion in which additionally the node mobility was taken into account. The results again proved that a significant improvement was accomplished compared to minimum-hop routing. Finally, multicost routing was applied in the field of multicasting and broadcasting in wireless ad hoc networks. The emphasis was again on energy-efficiency by incorporating energy-related cost parameters like node residual energy and transmission power. The multicost algorithm calculates the optimal energy-efficient sequence of nodes that by transmitting implement the desired communication task (multicasting or broadcasting). Simulation results illustrate a clear advantage of our algorithm over established solutions for energy-efficient multicasting and broadcasting.
56

Creating Correct Network Protocols

Wibling, Oskar January 2008 (has links)
Network protocol construction is a complex and error prone task. The challenges originate both from the inherent complexity of developing correct program code and from the distributed nature of networked systems. Protocol errors can have devastating consequences. Even so, methods for ensuring protocol correctness are currently only used to a limited extent. A central reason for this is that they are often complex and expensive to employ. In this thesis, we develop methods to perform network protocol testing and verification, with the goal to make the techniques more accessible and readily adoptable. We examine how to formulate correctness requirements for ad hoc routing protocols used to set up forwarding paths in wireless networks. Model checking is a way to verify such requirements automatically. We investigate scalability of finite-state model checking, in terms of network size and topological complexity, and devise a manual abstraction technique to improve scalability. A methodology combining simulations, emulations, and real world experiments is developed for analyzing the performance of wireless protocol implementations. The technique is applied in a comparison of the ad hoc routing protocols AODV, DSR, and OLSR. Discrepancies between simulations and real world behavior are identified; these are due to absence of realistic radio propagation and mobility models in simulation. The issues are mainly related to how the protocols sense their network surroundings and we identify improvements to these capabilities. Finally, we develop a methodology and a tool for automatic verification of safety properties of infinite-state network protocols, modeled as graph transformation systems extended with negative application conditions. The verification uses symbolic backward reachability analysis. By introducing abstractions in the form of summary nodes, the method is extended to protocols with recursive data structures. Our tool automatically verifies correct routing of the DYMO ad hoc routing protocol and several nontrivial heap manipulating programs.
57

Comparing network coding implementations on different OSI layers / Jacobus Leendert van Wyk

Van Wyk, Jacobus Leendert January 2010 (has links)
Network coding is a technique used to increase the capacity of a network by combining messages sent over the network. The combined messages could be separated by using sufficient original messages which were used to combine the messages. Network coding can be implemented in different layers of the 051 stack, but to date a complete comparison between different implementations of network coding has not been done. The goal of this dissertation is to implement a wireless node model with network coding in the MAC layer and evaluate the performance characteristics of reference networks that implement the new node model. This will serve as the first step of a greater goal, namely finding the most favourable position in the 051 stack to implement network coding. The characteristics of the different implementations of network coding are presented in this dissertation. Simulations were done in OPNET® to find further attributes concerning the implementation of network coding in the MAC layer. The simulation process used is presented and explained, and the results from the simulations are analysed. Network coding in the simulations was implemented opportunistically. The results show that the more often different nodes send frames to the coding node, the better network coding performs. The work contributes to finding the best layer for implementing network coding for its increased throughput. A benchmark network was created so that network coding could be implemented in all the layers of the 051 stack, and then be compared to each other. An implementation of network coding in the MAC layer was simulated and analyzed. We conclude that, because there are so many different purposes for which networks are used, a single instance of network coding is unlikely to be similarly beneficial to all purposes. There still remains work to find the most favourable position for network coding in the 051 stack for all the different types of network coding. / Thesis (M. Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2011
58

Energy Efficient Scheme Using Handshaking For Broadcast In A Wireless Ad Hoc Network

Sathya Prakash, K R 05 1900 (has links) (PDF)
The applications of ad hoc wireless networks envisaged in this thesis are those related to issues of disaster management, rehabilitation, security and defense. The circumstances in such situations warrants the deployment of a quick ad hoc network that is simple and uses minimum resoures to get started. The communication within the network has to be reliable and it has to be simple so that it can be deployed in extremely compex topography and other climatic conditions. Since large batteries cannot be assumed to be at our disposal for the sake of communication at all the times, energy conservation by way of energy efficient schemes is a paramount issue. Ad hoc wireless networks are broadcast networks by nature. For all the communications, transmissions by the nodes are broadcast into the air. A networkwide broadcast is distinguished from this. When a node wants its data to reach all the other nodes in the network then it initiates a networkwide broadcast. There may be nodes in the network that are not directly reachable by the node that wants to do a networkwide broadcast. Networkwide broadcast is used by ad hoc wireless networks for routing protocols, updating of network status information, network organization and multicasting. Most importantly, the applications envisaged out of this thesis need all their data communication as networkwide broadcast alone. In an ad hoc wireless network, a networkwide broadcast is usually effected by the flooding mechanism, which is inherently inefficient, since all the nodes in the network have to transmit the same information. It is possible to exploit the topology of the network in such a way, that only a few of the nodes need to transmit the information to complete a networkwide broadcast. The thesis deals with a new scheme for a networkwide broadcast implemented in the media access control (MAC) layer of an ad hoc wireless network. The new scheme is developed by extending the concept of handshaking signals used in unicast, to the networkwide broadcast scenario. In the case of unicast, where there is an intended recipient, handshaking is done for reliability and happens through the RTS and CTS packets. This idea is extended to suit the networkwide broadcast scenario and the consequences are discussed in detail in the thesis. Intuitively, adding more packets for handshaking increases the number of bytes transmitted. But the results obtained are interesting, since the network transmits fewer bytes per networkwide broadcast, on an average, with the newly proposed scheme. A comparison is done with the implementation of simple flooding following the IEEE 802.11 standard. These results have been demonstrated by simulations. The average improvement is nearly 2.5 times reduction in the number of bytes transmitted per networkwide broadcast. The performance of a networkwide broadcast in an ad hoc wireless network is usually affected badly by losses due to transmssion error in the medium. In a medium with errors, persistence improves reliability. This reliability helps in bringing robustness. The advantage of the proposed scheme is that it uses the idea of persistence to ensure the networkwide broadcast reachabilityto be almost independent of transmission error rate. The MAC layer ensures that the broadcast packet reaches each and every node that is connected to the node that initiates the etworkwide broadcast. The effects of collision are also overcome. Our simulations establish that the scheme works correctly, and gives good performance.
59

Hierarchical routing and cross-layer mechanisms for improving video streaming quality of service over mobile wireless ad hoc networks

Arce Vila, Pau 20 March 2014 (has links)
This thesis dissertation addresses the problem of providing video streaming services over mobile wireless ad hoc networks. This sort of network represents a hostile environment for this kind of realtime data transmission to the extent that obtaining a good quality of viewer experience is challenging and still under study. Besides the research point of view, providing high-quality multimedia services is decisive for the practical usability and feasibility of wireless ad hoc networks so that service providers can broaden the range of services offered. So far, mobile wireless ad hoc networks have been used to provide network connection among users who could not have connectivity otherwise. However, quality expectations and requirements have been increased notably, fostered by the advent of real-time multimedia applications over mobile devices. Due to the considerable processing and bandwidth constraints underlying these types of devices, coupled with their ability to move freely, it becomes a difficult task to achieve an acceptable quality of service throughout the entire video transmission. Thus, the contribution of this thesis work is twofold. On the one hand, the main problems and limitations that may be encountered and should be faced when deploying real-time services over mobile wireless ad hoc networks are analyzed and discussed. Bandwidth constraints and node mobility are portrayed as the major causes that prevent good quality of service and smooth video playback. On the other hand, following then the aim of improving video streaming quality, this thesis proposes practical solutions that involve diverse routing and cross-layer techniques. One of the proposed approaches focuses on hierarchical routing. Hierarchical arrangement of network nodes may reduce packet interference as well as offer a structured architecture that reduces control traffic overhead. Particularly, the proposed hierarchical routing protocol aims at providing scalability when the number of nodes grows, while maintaining complexity as low as possible. The resulting reduction in packet losses and video playback interruptions finally enhances the quality of received video streams. Furthermore, on the basis that the nodes in an ad hoc network are willing to perform routing tasks, every node could become essential for the proper network operation and routing performance. In tune with this philosophy, a new cross-layer mechanism for recovering lost packets is proposed. By overhearing packets over the wireless shared medium, any node in the surrounding area of the destination endpoint can altruistically retransmit those video packets that have not been correctly received at destination. Moreover, due to the video awareness and frame prioritization algorithm considered in this proposal, it becomes very convenient for real-time video streaming services. The results show that the presented mechanism succeeds in improving video quality and user experience, especially when packet losses are caused due to the mobility of the destination node. / Arce Vila, P. (2014). Hierarchical routing and cross-layer mechanisms for improving video streaming quality of service over mobile wireless ad hoc networks [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/36538 / Alfresco
60

Modeling, Design And Evaluation Of Networking Systems And Protocols Through Simulation

Lacks, Daniel Jonathan 01 January 2007 (has links)
Computer modeling and simulation is a practical way to design and test a system without actually having to build it. Simulation has many benefits which apply to many different domains: it reduces costs creating different prototypes for mechanical engineers, increases the safety of chemical engineers exposed to dangerous chemicals, speeds up the time to model physical reactions, and trains soldiers to prepare for battle. The motivation behind this work is to build a common software framework that can be used to create new networking simulators on top of an HLA-based federation for distributed simulation. The goals are to model and simulate networking architectures and protocols by developing a common underlying simulation infrastructure and to reduce the time a developer has to learn the semantics of message passing and time management to free more time for experimentation and data collection and reporting. This is accomplished by evolving the simulation engine through three different applications that model three different types of network protocols. Computer networking is a good candidate for simulation because of the Internet's rapid growth that has spawned off the need for new protocols and algorithms and the desire for a common infrastructure to model these protocols and algorithms. One simulation, the 3DInterconnect simulator, simulates data transmitting through a hardware k-array n-cube network interconnect. Performance results show that k-array n-cube topologies can sustain higher traffic load than the currently used interconnects. The second simulator, Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc wireless routing protocol that uses a data distribution methodology based on the GPS-QHRA routing protocol. CLL algorithm can realize a maximum of 45% power savings and maximum 25% reduced queuing delay compared to GPS-QHRA. The third simulator simulates a grid resource discovery protocol for helping Virtual Organizations to find resource on a grid network to compute or store data on. Results show that worst-case 99.43% of the discovery messages are able to find a resource provider to use for computation. The simulation engine was then built to perform basic HLA operations. Results show successful HLA functions including creating, joining, and resigning from a federation, time management, and event publication and subscription.

Page generated in 0.0722 seconds