• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 162
  • 44
  • 25
  • 11
  • 10
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 348
  • 348
  • 80
  • 78
  • 78
  • 61
  • 55
  • 45
  • 43
  • 42
  • 37
  • 33
  • 31
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamic resource allocation for cognitive radio systems

Hashmi, Ziaul Hasan 11 1900 (has links)
Cognitive Radio (CR) is considered to be a novel approach to improve the underutilization of precious radio resources by exploiting the unused licensed spectrum in dynamically changing environments. Designing efficient resource allocation algorithms for dynamic spectrum sharing and for power allocation in OFDM-CR networks is still a challenging problem. In this thesis, we specifically deal with these two problems. Dynamic spectrum sharing for the unlicensed secondary users (SU)s with device coordination could minimize the wastage of the spectrum. But this is a feasible approach only if the network considers the fairness criterion. We study the dynamic spectrum sharing problem for device coordinated cognitive radio networks with respect to fairness. We propose a simple modified proportional fair algorithm for a dynamic spectrum sharing scenario with two constraints, time and utility. Utility is measured by the amount of data processed and time is measured as the duration of a slot. This algorithm could result in variable or fixed length time slots. We will discuss the several controls possible on the algorithm and the possible extension of this algorithm for multicarrier OFDM based CR systems. Traditional water-filling algorithm is inefficient for OFDM-CR networks due to the interaction with primary users (PU)s. We consider reliability/availability of subcarriers or primary user activity for power allocation. We model this aspect mathematically with a risk-return model by defining a general rate loss function. We then propose optimal and suboptimal algorithms to allocate power under a fixed power budget for such a system with linear rate loss. These algorithms as we will see allocate more power to more reliable subcarriers in a water-filling fashion with different water levels. We compare the performance of these algorithms for our model with respect to water-filling solutions. Simulations show that suboptimal schemes perform closer to optimal scheme although they could be implemented with same complexity as water-filling algorithm. We discuss the linearity of loss function and guidelines to choose its coefficients by obtaining upper bounds on them. Finally we extend this model for interference-limited OFDM-CR systems. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
22

SPACE-TIME CODING FOR WIRELESS COMMUNICATIONS

Jensen, Michael A., Rice, Michael D. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / Signal fading and intersymbol interference created by multipath propagation have traditionally limited the throughput on wireless communications systems. However, recent research has demonstrated that by using multiple antennas on both transmit and receive ends of the link, the multipath channel can actually be exploited to achieve increased communication throughput over single-antenna systems. This paper provides an introductory description of such multi-antenna communications systems, focusing on basic explanations of how they achieve capacity gains. Computed and measured capacity results are used to demonstrate the potential of these systems.
23

TOWARDS FULLY AUTOMATED INSTRUMENTATION TEST SUPPORT

Jones, Charles H. 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Imagine that a test vehicle has just arrived at your test facility and that it is fully instrumented with sensors and a data acquisition system (DAS). Imagine that a test engineer logs onto the vehicle’s DAS, submits a list of data requirements, and the DAS automatically configures itself to meet those data requirements. Imagine that the control room then contacts the DAS, downloads the configuration, and coordinates its own configuration with the vehicle’s setup. Imagine all of this done with no more human interaction than the original test engineer’s request. How close to this imaginary scenario is the instrumentation community? We’re not there yet, but through a variety of efforts, we are headed towards this fully automated scenario. This paper outlines the current status, current projects, and some missing pieces in the journey towards this end. This journey includes standards development in the Range Commander’s Council (RCC), smart sensor standards development through the Institute of Electrical and Electronics Engineers (IEEE), Small Business Innovation Research (SBIR) contracts, efforts by the integrated Network Enhanced Telemetry (iNET) project, and other projects involved in reaching this goal.
24

Space-time block coding for wireless communications

Masoud, Masoud January 2008 (has links)
Wireless designers constantly seek to improve the spectrum efficiency/capacity, coverage of wireless networks, and link reliability. Space-time wireless technology that uses multiple antennas along with appropriate signalling and receiver techniques offers a powerful tool for improving wireless performance. Some aspects of this technology have already been incorporated into various wireless network and cellular mobile standards. More advanced MIMO techniques are planned for future mobile networks, wireless local area network (LANs) and wide area network (WANs). Multiple antennas when used with appropriate space-time coding (STC) techniques can achieve huge performance gains in multipath fading wireless links. The fundamentals of space-time coding were established in the context of space-time Trellis coding by Tarokh, Seshadri and Calderbank. Alamouti then proposed a simple transmit diversity coding scheme and based on this scheme, general space-time block codes were further introduced by Tarokh, Jafarkhani and Calderbank. Since then space-time coding has soon evolved into a most vibrant research area in wireless communications. Recently, space-time block coding has been adopted in the third generation mobile communication standard which aims to deliver true multimedia capability. Space-time block codes have a most attractive feature of the linear decoding/detection algorithms and thus become the most popular among different STC techniques. The decoding of space-time block codes, however, requires knowledge of channels at the receiver and in most publications, channel parameters are assumed known, which is not practical due to the changing channel conditions in real communication systems. This thesis is mainly concerned with space-time block codes and their performances. The focus is on signal detection and channel estimation for wireless communication systems using space-time block codes. We first present the required background materials, discuss different implementations of space-time block codes using different numbers of transmit and receive antennas, and evaluate the performances of space-time block codes using binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), and quadrature amplitude modulation (QAM). Then, we investigate Tarokh’s joint detection scheme with no channel state information thoroughly, and also propose a new general joint channel estimation and data detection scheme that works with QPSK and 16-QAM and different numbers of antennas. Next, we further study Yang’s channel estimation scheme, and expand this channel estimation scheme to work with 16-QAM modulation. After dealing with complex signal constellations, we subsequently develop the equations and algorithms of both channel estimation schemes to further test their performances when real signals are used (BPSK modulation). Then, we simulate and compare the performances of the two new channel estimation schemes when employing different number of transmit and receive antennas and when employing different modulation methods. Finally, conclusions are drawn and further research areas are discussed.
25

Round-Trip Time-Division Distributed Beamforming

Coey, Tyson Curtis 10 July 2007 (has links)
"This thesis develops a system for synchronizing two wireless transmitters so that they are able to implement a distributed beamformer in several different channel models. This thesis considers a specific implementation of the system and proposes a metric to quantify its performance. The system's performance is investigated in single-path and multi-path time-invariant channel scenarios, as well as in single-path time-varying channel scenarios. Where prior systems have difficulty in implementing a distributed beamformer in multi-path channels and/or mobile scenarios, the results of this thesis show that the Round-Trip Time-Division distributed beamforming system is able to perform as a beamformer in all three of the channel models considered. "
26

A mathematical framework for expressing multivariate distributions useful in wireless communications

Hemachandra, Kasun Thilina 11 1900 (has links)
Multivariate statistics play an important role in performance analysis of wireless communication systems in correlated fading channels. This thesis presents a framework which can be used to derive easily computable mathematical representations for some multivariate statistical distributions, which are derivatives of the Gaussian distribution, and which have a particular correlation structure. The new multivariate distribution representations are given as single integral solutions of familiar mathematical functions which can be evaluated using common mathematical software packages. The new approach can be used to obtain single integral representations for the multivariate probability density function, cumulative distribution function, and joint moments of some widely used statistical distributions in wireless communication theory, under an assumed correlation structure. The remarkable advantage of the new representation is that the computational burden remains at numerical evaluation of a single integral, for a distribution with an arbitrary number of dimensions. The new representations are used to evaluate the performance of diversity combining schemes and multiple input multiple output systems, operating in correlated fading channels. The new framework gives some insights into some long existing open problems in multivariate statistical distributions. / Communications
27

Multiple antenna systems in a mobile-to-mobile environment

Kang, Heewon 20 November 2006 (has links)
The objective of this dissertation is to design new architectures for multiple antenna wireless communication systems operating in a mobile-to-mobile environment and to develop a theoretical framework according to which these systems can be analyzed. Recent information theory has demonstrated that the wireless channel can support enormous capacity if the multipath is properly exploited by using multiple antennas. Future communication systems will likely evolve into a variety of combinations encompassing mobile-to-mobile and mobile-to-fixed-station communications. Therefore, we explore the use of multiple antennas for mobile-to-mobile communications. Based on the characteristics of mobile-to-mobile radio channels, we propose new architectures that deploy directional antennas for multiple antenna systems operating in a mobile-to-mobile environment. The first architecture consists of multiple input and multiple output (MIMO) systems with directional antennas, which have good spatial correlation properties, and provides higher capacities than conventional systems without requiring a rich scattering environment. The second one consists of single input and multiple output (SIMO) systems with directional antennas, which improve signal-to-interference-plus-noise ratio (SINR) over conventional systems. We also propose a new combining scheme to select the outputs of optimal combing (SOOC) in this architecture. Optimal combining (OC) is the key technique for multiple antenna systems to suppress interference and mitigate the fading effects. Based on the complex random matrix theory, we develop an analytical framework for the performance analysis of OC. We derive several important closed-form solutions such as the moment generating function (MGF) and the joint eigenvalue distributions of SINR with arbitrary-power interferers and thermal noise. We also analyze the effects of spatial correlations on MIMO OC systems with arbitrary-power interferers in an interference environment. Our novel multiple antenna architectures and the theoretical framework according to which they can be analyzed would provide other researchers with useful tools to analyze and develop future MIMO systems.
28

QoS-driven adaptive resource allocation for mobile wireless communications and networks

Tang, Jia 15 May 2009 (has links)
Quality-of-service (QoS) guarantees will play a critically important role in future mobile wireless networks. In this dissertation, we study a set of QoS-driven resource allocation problems for mobile wireless communications and networks. In the first part of this dissertation, we investigate resource allocation schemes for statistical QoS provisioning. The schemes aim at maximizing the system/network throughput subject to a given queuing delay constraint. To achieve this goal, we integrate the information theory with the concept of effective capacity and develop a unified framework for resource allocation. Applying the above framework, we con-sider a number of system infrastructures, including single channel, parallel channel, cellular, and cooperative relay systems and networks, respectively. In addition, we also investigate the impact of imperfect channel-state information (CSI) on QoS pro-visioning. The resource allocation problems can be solved e±ciently by the convex optimization approach, where closed-form allocation policies are obtained for different application scenarios. Our analyses reveal an important fact that there exists a fundamental tradeoff between throughput and QoS provisioning. In particular, when the delay constraint becomes loose, the optimal resource allocation policy converges to the water-filling scheme, where ergodic capacity can be achieved. On the other hand, when the QoS constraint gets stringent, the optimal policy converges to the channel inversion scheme under which the system operates at a constant rate and the zero-outage capacity can be achieved. In the second part of this dissertation, we study adaptive antenna selection for multiple-input-multiple-output (MIMO) communication systems. System resources such as subcarriers, antennas and power are allocated dynamically to minimize the symbol-error rate (SER), which is the key QoS metric at the physical layer. We propose a selection diversity scheme for MIMO multicarrier direct-sequence code- division-multiple-access (MC DS-CDMA) systems and analyze the error performance of the system when considering CSI feedback delay and feedback errors. Moreover, we propose a joint antenna selection and power allocation scheme for space-time block code (STBC) systems. The error performance is derived when taking the CSI feedback delay into account. Our numerical results show that when feedback delay comes into play, a tradeoff between performance and robustness can be achieved by dynamically allocating power across transmit antennas.
29

Cross-layer design of admission control policies in code division multiple access communications systems utilizing beamforming

Sheng, Wei 07 August 2008 (has links)
To meet growing demand for wireless access to multimedia traffic, future generations of wireless networks need to provide heterogenous services with high data rate and guaranteed quality-of-service (QoS). Many enabling technologies to ensure QoS have been investigated, including cross-layer admission control (AC), error control and congestion control. In this thesis, we study the cross-layer AC problem. While previous research focuses on single-antenna systems, which does not capitalize on the significant benefits provided by multiple antenna systems, in this thesis we investigate cross-layer AC policy for a code-division-multiple-access (CDMA) system with antenna arrays at the base station (BS). Automatic retransmission request (ARQ) schemes are also exploited to further improve the spectral efficiency. In the first part, a circuit-switched network is considered and an exact outage probability is developed, which is then employed to derive the optimal call admission control (CAC) policy by formulating a constrained semi-Markov decision process (SMDP). The derived optimal policy can maximize the system throughput with guaranteed QoS requirements in both physical and network layers. In the second part, a suboptimal low-complexity CAC policy is proposed based on an approximate power control feasibility condition (PCFC) and a reduced-outage-probability algorithm. Comparison between optimal and suboptimal CAC policies shows that the suboptimal CAC policy can significantly reduce the computational complexity at a cost of degraded performance. In the third part, we extend the above research to packet-switched networks. A novel SMDP is formulated by incorporating ARQ protocols. Packet-level AC policies are then proposed. The proposed policies exploit the error control capability provided by ARQ schemes, while simultaneously guaranteeing QoS requirements in the physical and packet levels. In the fourth part, we propose a connection admission control policy in a connection-oriented packet-switched network, which can guarantee QoS requirements in physical, packet and connection levels. By considering joint optimization across different layers, the proposed optimal policy provides a flexible way to handle multiple QoS requirements, while at the same time, maximizing the overall system throughput. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2008-08-05 16:21:40.431
30

A new efficient CSI signalling strategy for MMR Systems with optimal detection

Malkawi, Mamoun 14 August 2008 (has links)
We present a new Channel State Information (CSI) signalling strategy for single- branch Mobile Multihop Relay (MMR) systems. This novel signalling strategy reduces the signalling overhead at each relay by at least 50%, and eliminates the need for channel estimation at the relays. We prove that this significant overhead reduction comes at the expense of no performance loss at all when hard Maximum Likelihood detection is carried out at the destination. Furthermore, we consider the use of our system with concatenated channel codes to carry out soft Maximum a Posteriori (MAP) detection, and show that with channel codes employed the optimum detection rule becomes prohibitively complex to implement. We propose two approximate soft MAP detection schemes to make the detection feasible for our system, and demonstrate that the performance is either almost identical or slightly degraded from the ideal case with full CSI at the destination. We demonstrate the validity of our analysis through performance simulation plots. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-08-08 19:27:48.283

Page generated in 0.1268 seconds