• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 8
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 87
  • 39
  • 35
  • 24
  • 18
  • 16
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Wireless Powered Communication over Inductively Coupled Circuits

Tomohiro Arakawa (10716051) 06 May 2021 (has links)
Wireless powered communication (WPC) is an emerging paradigm where wireless devices are powered over the air while exchanging information with them. This technology is attractive for various wireless applications, including classical radio-frequency identification (RFID) systems, implantable sensors, environmental sensing as found in agriculture and forestry, and simultaneous charging and telemetry communications for electric vehicles. While recent studies have shown that inductive coupling provides a more energy-efficient and robust channel for short and middle-range wireless transmission, most of the previous analyses on WPC have been limited to far-field transmission models. To this end, this work provides a comprehensive framework to design and analyze WPC over inductively coupled circuits. We consider three problems, namely, wireless power transfer (WPT), simultaneous wireless information and power transfer (SWIPT), and wireless powered communication network (WPCN) using multiple coupled coils. Each configuration is modeled by an abstract circuit model in which various effects, including mutual coupling and parasitic elements, are captured by a small number of measurable parameters. This technique allows us to not only eliminate the need for solving the circuit but also apply well-known signal processing techniques such as beamforming and channel estimation to inductively coupled models. For each of the three models, we derive the properties of the optimal source signal. In addition, we propose methods to design the load impedance of WPCN by taking into account the nonlinear effects due to impedance mismatches in the circuits.
52

A Scheduling Scheme for Efficient Wireless Charging of Sensor Nodes in WBAN

Rabby, Md Khurram M., Alam, Mohammad Shah, Shawkat, Shamim Ara, Hoque, Mohammad A. 14 August 2017 (has links)
This paper presents a scheduling algorithm for point to point wireless power transfer system (WPTS) to sensor nodes of wireless body area networks (WBAN). Since the sensors of wireless body area networks are continuously monitoring and sending data to remote central unit, power crisis for these sensor nodes degrades the data transfer of patient monitoring system. Although energy harvesting from ambient sources using electromagnetic induction enhances the longevity of sensor performance, continuous operation in the primary side decreases the overall efficiency. With such paradigm in sight, a framework is proposed for increasing the primary battery longevity and reducing the transmission loss, inductive power is transmitted from primary to secondary unit using medium access control (MAC) protocols for underlying the centralized scheduling opportunity in a collision free scheme for channel access of rare yet critical emergency situation. In a preliminary study, the proposed scheduling for charging sensor nodes in a wireless body area network (WBAN) is evaluated in a case consideration.
53

Design Optimization of Inductive Power Transfer Systems for Contactless Electric Vehicle Charging Applications

Moghaddami, Masood 18 October 2018 (has links)
Contactless Electric Vehicle (EV) charging based on magnetic resonant induction is an emerging technology that can revolutionize the future of the EV industry and transportation systems by enabling an automated and convenient charging process. However, in order to make this technology an acceptable alternative for conventional plug-in charging systems it needs to be optimized for different design measures. Specifically, the efficiency of an inductive EV charging system is of a great importance and should be comparable to the efficiency of conventional plug-in EV chargers. The aim of this study is to develop solutions that contribute to the design enhancement of inductive EV charging systems. Specifically, generalized physics-based design optimization methods that address the trade-off problem between several key objectives including efficiency, power density, misalignment tolerance, and cost efficiency considering critical constraints are developed. Using the developed design methodology, a 3.7kW inductive charging system with square magnetic structures is investigated as a case study and a prototype is built to validate the optimization results. The developed prototype achieves 93.65% efficiency (DC-to-DC) and a power density of 1.65kW/dm3. Also, self-tuning power transfer control methods with resonance frequency tracking capability and bidirectional power transfer control are presented. The proposed control methods enhance the efficiency of power converters and reduce the Electromagnetic Interference (EMI) by enabling soft-switching operations. Several simplified digital controllers are developed and experimentally implemented. The controllers are implemented without the use of DSP/FPGA solutions. Experimental tests show that of the developed simplified controllers can effectively regulate the power transfer around the desired value. Moreover, the experiments show that compared to conventional converters, the developed converters can achieve 4% higher efficiency at low power levels. Moreover, enhanced matrix converter topologies that can achieve bidirectional power transfer and high efficiency with a reduced number of switching elements are introduced. The self-tuning controllers are utilized to design and develop control schemes for bidirectional power transfer regulation. The simulation analyses and experimental results show that the developed matrix converters can effectively establish bidirectional power transfer at the desired power levels with soft-switching operations and resonance frequency tracking capability. Specifically, a direct three-phase AC-AC matrix converter with a reduced number of switches (only seven) is developed and built. It is shown that the developed converters can achieve efficiencies as high as 98.54% at high power levels and outperform conventional two-stage converters.
54

Electromagnetic Techniques for Performance Enhancement of Wireless Systems

Ahmed Mahmoud Mahrous Abdelraheem (8085602) 31 January 2022 (has links)
<p>Lyophilization is the process of controllably removing the water content from a material with the objective of increasing its stability and, hence, its shelf life. This dissertation addresses two of the challenges faced by lyophilization, namely continuous temperature-monitoring and lengthy primary drying step.</p> <p>Continuous temperature monitoring of the product is imperative to a successful lyophilization process. It is more efficient to employ wireless temperature sensors rather than the conventional thermocouples. These wireless sensors need to keep a low profile that does not allow bulky battery attachment. Therefore, harvesting microwave energy is an excellent practice to power these sensors. Energy harvesting problem is twofold. One, designing an efficient flexible power-harvester (rectenna). To address this problem, we present a flexible rectenna with superior efficiency. While doing so, we establish the design procedure that can be followed for similar designs. Two, delivering sufficient power to the rectenna location inside the chamber. To address this problem, we propose two electromagnetic techniques, namely the statistical electromagnetics (SEM) and the electromagnetic time reversal (EMTR). These enable uniform power distribution and higher total efficiency.</p> As for the lengthy primary drying, to speed up the process, we propose RF-heating as a replacement for conventional heating. We establish a procedure for frequency selection based on the material under lyophilization and the geometrical properties of the freeze-drier’s chamber. The same techniques, SEM and EMTR are used. We conduct RF-assisted lyophilization processes based on SEM on different pharmaceutical bare excipients and on Myoglobin in four different excipients. The results confirm the superiority of the proposed technique in terms of drying time and heating uniformity.
55

Theoretical Parametric Study of Through-Wall Acoustic Energy Transfer Systems

Winnard, Thomas Johan 19 May 2021 (has links)
Technological advances require novel solutions for contactless energy transfer. Many engineering applications require unique approaches to power electrical components without using physical wires. In the past decade, awareness of the need to wirelessly power electrical components spawned many forays into the field of wireless power transfer (WPT). WPT techniques include capacitive energy transfer, electromagnetic inductive power transfer, electromagnetic radiative power transfer, electrostatic induction, and acoustic energy transfer. Acoustic energy transfer (AET) has many advantages over other methods. These advantages include lower operating frequency, shorter wavelengths enabling the use of smaller sized receiver and transmitter, extended transmitter-to-receiver distance therefore more manageable design constraints, achieving lower attenuation, higher penetration depth, and no electromagnetic losses. Most AET systems operate in the ultrasonic frequency range and are more commonly referred to as ultrasonic acoustic energy transfer (UAET) systems. Through-wall UAET systems are constructed of a transmitter bonded to a transmission elastic layer, which in turn is bonded to a receiver. The transmitter and receiver layers are constructed of a piezoelectric material. Piezoelectric materials behave according to the piezoelectric effect, which is when a material generates an electric charge in response to mechanical strain. The transmitter utilizes the reverse of the piezoelectric effect. A sinusoidal input voltage is applied to the transmitter, inducing vibrations in the transmitter. The vibration-induced acoustic waves emanating from the transmitter travel through the initial bonding layer, the transmission layer, and the final bonding layer to the receiver. In turn, the acoustic waves cause the receiver to deform and undergo strain. This induces a flow of charge in the receiver, which is an electric current. The receiver feeds current to a resistive load. In this manner, energy is acoustically transferred between two transducers without wires. The performance of UAET systems can be evaluated based on power transfer efficiency, voltage magnification, and input admittance. UAET systems require extensive modeling before experimental assembly can be attempted. The analytical models of UAET are either based on the mechanics of the constitutive relations of piezoelectricity and solid mechanics or using equivalent circuit methods. The equivalent circuit method approximates the physics of the UAET system with electrical assumptions. The mechanics-based method is the most comprehensive description of the physics of all the intermediate layers in a UAET system. The mechanics-based method has been based on the assumption that the UAET system is operated in the thickness mode of vibration, i.e., piston-like vibration mode where the transmitter and receiver disks vibrate only in the thickness direction. This poses an issue for disks with aspect ratios between 0.1 and 20 because the piezoelectric transducers vibrate in both the radial and thickness modes. In addition to this assumption, most of the works on UAET models only have accounted for the piezoelectric and transmission layers. The effects of the bonding layers were not considered. Bonding the piezoelectric layers to the transmission layer introduces epoxy material with mechanical properties that are not accounted for. The epoxy layers are extra barriers to the transmission that introduce attenuation and alter the vibrational and acoustical behaviors of the UAET system. Investigations into UAET commonly focus on metal through-wall applications. Alternate transmission layer materials are not investigated and the impact of varying mechanical properties on the performance of a through-wall UAET system has not been comprehensively studied. Even with the metal transmission layers, the impact of the metal thickness has not been extensively investigated thoroughly. This work addresses the issues of the thickness-mode assumption in UAET modeling, the effects of epoxy layers, the impacts of the metal layer geometry, and the performance of UAET systems with alternate transmission layer materials. Particularly, (1) we showed that the thickness-mode assumption, that has been used in the UAET modeling leads to inaccurate results. (2) We modified the available acoustic electro- elastic theoretical modeling to include the effects of radial modes as well as the epoxy bonding layers. (3) We showed that the geometry of the elastic/metal layer requires optimization for peak system efficiency. (4) The results show that using alternate transmission layer materials impacts the performance of UAET systems. The results of this work were investigated using an improved 5-layer analytical model and finite element modeling in COMSOL Multiphysics. / Master of Science / Wireless power transfer (WPT) is an innovative solution to the problem of powering sophisticated technological applications. Such instances include the powering of implanted medical devices, recharging inaccessible sensor networks, and wireless powering of components in sealed containers. Acoustic energy transfer (AET) is a feasible WPT method that addresses these needs. AET is based on the propagation of acoustic waves to a piezoelectric receiver which converts the vibrations caused by incident acoustic waves into electrical energy. Most AET systems operate in the ultrasonic frequency range, and so AET can also be referred to as ultrasonic acoustic energy transfer (UAET). Through-wall UAET systems are constructed from a transmitter that is bonded to a transmission elastic layer. The transmission layer is bonded to a receiver. The transmitter and receiver are made of a piezoelectric material. This thesis addresses the modeling process of through-wall UAET systems. In previous works, the fundamental assumption has been that such systems vibrate purely in the thickness mode. Additionally, other investigations did not comprehensively analyze the effects of the bonding layers, ascertain the performance of non-metal transmission layers, or provide practical insight on the effect of the resistive loading on such systems. This work addresses all these issues with a mathematical framework and finite element modeling results.
56

Textile Integrated Induction : Investigation of Textile Inductors for Wireless Power Transfer

Yring, Malin January 2016 (has links)
This research has its basis in developments within the field of inductive powering and wireless power transfer, WPT, and more specifically one the branch within this field, which is called magnetic resonance coupling. This principle enables efficient power transfer from a transmitting unit to a receiving unit at a distance of some times the unit diameter. The developments within magnetic resonant coupling are together with the possibilities and challenges of today’s smart textile industry the starting point to investigate a novel textile-based product concept for WPT by combining both technologies. Multiple textile samples, consisting of cotton and electrically conductive copper yarns, were produced by weaving technique, additional assembling of electronic components were performed manually and several measurements were carried out to investigate the sample characteristics and the sample performance in terms of power transfer. The produced samples showed to behave similarly to conventional inductors and were able to transfer power over some distance.
57

Distributed Cooperative Communications and Wireless Power Transfer

Wang, Rui 22 February 2018 (has links)
In telecommunications, distributed cooperative communications refer to techniques which allow different users in a wireless network to share or combine their information in order to increase diversity gain or power gain. Unlike conventional point-to-point communications maximizing the performance of the individual link, distributed cooperative communications enable multiple users to collaborate with each other to achieve an overall improvement in performance, e.g., improved range and data rates. The first part of this dissertation focuses the problem of jointly decoding binary messages from a single distant transmitter to a cooperative receive cluster. The outage probability of distributed reception with binary hard decision exchanges is compared with the outage probability of ideal receive beamforming with unquantized observation exchanges. Low- dimensional analysis and numerical results show, via two simple but surprisingly good approximations, that the outage probability performance of distributed reception with hard decision exchanges is well-predicted by the SNR of ideal receive beamforming after subtracting a hard decision penalty of slightly less than 2 dB. These results, developed in non-asymptotic regimes, are consistent with prior asymptotic results (for a large number of nodes and low per-node SNR) on hard decisions in binary communication systems. We next consider the problem of estimating and tracking channels in a distributed transmission system with multiple transmitters and multiple receivers. In order to track and predict the effective channel between each transmit node and each receive node to facilitate coherent transmission, a linear time-invariant state- space model is developed and is shown to be observable but nonstabilizable. To quantify the steady-state performance of a Kalman filter channel tracker, two methods are developed to efficiently compute the steady-state prediction covariance. An asymptotic analysis is also presented for the homogenous oscillator case for systems with a large number of transmit and receive nodes with closed-form results for all of the elements in the asymptotic prediction covariance as a function of the carrier frequency, oscillator parameters, and channel measurement period. Numeric results confirm the analysis and demonstrate the effect of the oscillator parameters on the ability of the distributed transmission system to achieve coherent transmission. In recent years, the development of efficient radio frequency (RF) radiation wireless power transfer (WPT) systems has become an active research area, motivated by the widespread use of low-power devices that can be charged wirelessly. In this dissertation, we next consider a time division multiple access scenario where a wireless access point transmits to a group of users which harvest the energy and then use this energy to transmit back to the access point. Past approaches have found the optimal time allocation to maximize sum throughput under the assumption that the users must use all of their harvested power in each block of the "harvest-then-transmit" protocol. This dissertation considers optimal time and energy allocation to maximize the sum throughput for the case when the nodes can save energy for later blocks. To maximize the sum throughput over a finite horizon, the initial optimization problem is separated into two sub-problems and finally can be formulated into a standard box- constrained optimization problem, which can be solved efficiently. A tight upper bound is derived by relaxing the energy harvesting causality. A disadvantage of RF-radiation based WPT is that path loss effects can significantly reduce the amount of power received by energy harvesting devices. To overcome this problem, recent investigations have considered the use of distributed transmit beamforming (DTB) in wireless communication systems where two or more individual transmit nodes pool their antenna resources to emulate a virtual antenna array. In order to take the advantages of the DTB in the WPT, in this dissertation, we study the optimization of the feedback rate to maximize the energy efficiency in the WPT system. Since periodic feedback improves the beamforming gain but requires the receivers to expend energy, there is a fundamental tradeoff between the feedback period and the efficiency of the WPT system. We develop a new model to combine WPT and DTB and explicitly account for independent oscillator dynamics and the cost of feedback energy from the receive nodes. We then formulate a "Normalized Weighted Mean Energy Harvesting Rate" (NWMEHR) maximization problem to select the feedback period to maximize the weighted averaged amount of net energy harvested by the receive nodes per unit of time as a function of the oscillator parameters. We develop an explicit method to numerically calculate the globally optimal feedback period.
58

Power management and power conditioning integrated circuits for near-field wireless power transfer

Fan, Philex Ming-Yan January 2019 (has links)
Near-field wireless power transfer (WPT) technology facilitates the energy autonomy of heterogeneous systems, significantly augmenting complementary metal-oxide-semiconductor field-effect-transistor (CMOS) technology. In low-power wearable devices, existing power conditioning integrated circuits do not maximize the power factor (PF) for rectification and power conversion efficiency (PCE) due to multiple conversion. Additionally, there is no core power management for the entire power flow. The majority of the research focuses on active rectifiers, which reduce the turn-on voltage for rectification. Certain studies target the output voltage regulation via feedback to the transmitter or direct battery charging without power maximization. Firstly, this study investigates a high-power factor WPT front-end circuit that is namely the mono-periodic switching rectifier (MPSR) and implemented in a 0.18µm 1.8V/5V CMOS process. Integrated phase synchronizers are used to align the waveshape of a wirelessly-coupled sinusoidal voltage source in a receiving coil to the corresponding conducting current. Using this approach, the PF can be increased from roughly 0.6 to unity without requiring any wireless or wired feedback to the transmitter. The proposed MPSR can also provide AC-DC rectification, and step up and down the sinusoidal voltage source's peak amplitude using a pulse-width modulator. Measured voltage conversion ratios range between 0.73X and 2X, and the PF can be boosted up to unity. Secondly, the wireless power system-on-chip (WPower-SoC) is proposed and implemented in a 0.18µm 1.8V/3.3V CMOS process. The WPower-SoC integrating power management can provide rectification, output voltage regulation, and battery charging. Additionally, the implementation of feedforward envelope detection (FED) can reduce the variation in a wireless power link and improve load transient responses. Simulated results demonstrate that 5% of the output voltage regulation is improved when an output load changes. Moreover, the FED reduces approximately 40% of the transient response time. Overshoot and undershoot voltages are decreased by 23% and 26.5%, respectively. The measured output voltage regulates at 3.42V and can supply output power up to 342mW. A temperature sensor as part of the power management core remains active when the WPT receivers enter sleep mode to prolong the battery usage time. In the final part of this study, a nano-watt high-accuracy temperature sensing core is implemented in a 0.18µm 1.8V/3.3V CMOS process that can self-compensate the temperature shift without the need for additional compensating techniques that consume extra power.
59

Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources

Mohamed, Ahmed A S, Mr 09 November 2017 (has links)
As electric vehicles (EVs) become more popular, the utility companies are forced to increase power generations in the grid. However, these EVs are capable of providing power to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the same time. These services can provide more benefits when they are integrated with Photovoltaic (PV) generation. The proper modeling, design and control for the power conversion systems that provide the optimum integration among the EVs, PV generations and grid are investigated in this thesis. The coupling between the PV generation and integration bus is accomplished through a unidirectional converter. Precise dynamic and small-signal models for the grid-connected PV power system are developed and utilized to predict the system’s performance during the different operating conditions. An advanced intelligent maximum power point tracker based on fuzzy logic control is developed and designed using a mix between the analytical model and genetic algorithm optimization. The EV is connected to the integration bus through a bidirectional inductive wireless power transfer system (BIWPTS), which allows the EV to be charged and discharged wirelessly during the long-term parking, transient stops and movement. Accurate analytical and physics-based models for the BIWPTS are developed and utilized to forecast its performance, and novel practical limitations for the active and reactive power-flow during G2V and V2G operations are stated. A comparative and assessment analysis for the different compensation topologies in the symmetrical BIWPTS was performed based on analytical, simulation and experimental data. Also, a magnetic design optimization for the double-D power pad based on finite-element analysis is achieved. The nonlinearities in the BIWPTS due to the magnetic material and the high-frequency components are investigated rely on a physics-based co-simulation platform. Also, a novel two-layer predictive power-flow controller that manages the bidirectional power-flow between the EV and grid is developed, implemented and tested. In addition, the feasibility of deploying the quasi-dynamic wireless power transfer technology on the road to charge the EV during the transient stops at the traffic signals is proven.
60

Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications

Islam, Ashraf Bin 01 December 2011 (has links)
With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood resulting in serious health risks. An alternate approach is to supply power wirelessly for tether-less and battery- less operation of the circuits.Inductive power transfer is the most common method of wireless power transfer to the implantable sensors. For good inductive coupling, the inductors should have high inductance and high quality factor. But the physical dimensions of the implanted inductors cannot be large due to a number of biomedical constraints. Therefore, there is a need for small sized and high inductance, high quality factor inductors for implantable sensor applications. In this work, design of a multi-spiral solenoidal printed circuit board (PCB) inductor for biomedical application is presented. The targeted frequency for power transfer is 13.56 MHz which is within the license-free industrial, scientific and medical (ISM) band. A figure of merit based optimization technique has been utilized to optimize the PCB inductors. Similar principal is applied to design on-chip inductor which could be a potential solution for further miniaturization of the implantable system. For layered human tissue the optimum frequency of power transfer is 1 GHz for smaller coil size. For this reason, design and optimization of multi-spiral solenoidal integrated inductors for 1 GHz frequency is proposed. Finally, it is demonstrated that the proposed inductors exhibit a better overall performance in comparison with the conventional inductors for biomedical applications.

Page generated in 0.2051 seconds