• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 492
  • 114
  • 84
  • 57
  • 34
  • 17
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 987
  • 987
  • 987
  • 188
  • 160
  • 147
  • 123
  • 116
  • 115
  • 115
  • 114
  • 111
  • 105
  • 104
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Non-Uniform Grid-Based Coordinated Routing in Wireless Sensor Networks

Kadiyala, Priyanka 08 1900 (has links)
Wireless sensor networks are ad hoc networks of tiny battery powered sensor nodes that can organize themselves to form self-organized networks and collect information regarding temperature, light, and pressure in an area. Though the applications of sensor networks are very promising, sensor nodes are limited in their capability due to many factors. The main limitation of these battery powered nodes is energy. Sensor networks are expected to work for long periods of time once deployed and it becomes important to conserve the battery life of the nodes to extend network lifetime. This work examines non-uniform grid-based routing protocol as an effort to minimize energy consumption in the network and extend network lifetime. The entire test area is divided into non-uniformly shaped grids. Fixed source and sink nodes with unlimited energy are placed in the network. Sensor nodes with full battery life are deployed uniformly and randomly in the field. The source node floods the network with only the coordinator node active in each grid and the other nodes sleeping. The sink node traces the same route back to the source node through the same coordinators. This process continues till a coordinator node runs out of energy, when new coordinator nodes are elected to participate in routing. Thus the network stays alive till the link between the source and sink nodes is lost, i.e., the network is partitioned. This work explores the efficiency of the non-uniform grid-based routing protocol for different node densities and the non-uniform grid structure that best extends network lifetime.
132

The Effect of Mobility on Wireless Sensor Networks

Hasir, Ibrahim 08 1900 (has links)
Wireless sensor networks (WSNs) have gained attention in recent years with the proliferation of the micro-electro-mechanical systems, which has led to the development of smart sensors. Smart sensors has brought WSNs under the spotlight and has created numerous different areas of research such as; energy consumption, convergence, network structures, deployment methods, time delay, and communication protocols. Convergence rates associated with information propagations of the networks will be questioned in this thesis. Mobility is an expensive process in terms of the associated energy costs. In a sensor network, mobility has significant overhead in terms of closing old connections and creating new connections as mobile sensor nodes move from one location to another. Despite these drawbacks, mobility helps a sensor network reach an agreement more quickly. Adding few mobile nodes to an otherwise static network will significantly improve the network’s ability to reach consensus. This paper shows the effect of the mobility on convergence rate of the wireless sensor networks, through Eigenvalue analysis, modeling and simulation.
133

Adhoc routing based data collection application in wireless sensor networks

Pinjala, Mallikarjuna Rao January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / Gurdip Singh / Ad hoc based routing protocol is a reactive protocol to route messages between mobile nodes. It allows nodes to pass messages through their neighbors to nodes which they cannot directly communicate. It uses Route Request (RREQ) and Route Reply (RREP) messages for communication. Wireless sensor networks consist of tiny sensor motes with capabilities of sensing, computation and wireless communication. This project aims to implement data collector application to collect the temperature data from the set of wireless sensor devices located within a building, which will help in gathering the information by finding the route with minimum number of hops to reach destination and generates low message traffic by not encouraging the duplicate message within the network. Using this application, wireless devices can communicate effectively to provide the network information to the user. This system consists of a mobile wireless sensor device called base station which is connected to a PC to communicate and is the root of the network. It also consists of set of client sensor devices which are present in different parts of the building. This project has been evaluated by determining how well the ad hoc protocol performs by measuring the number of messages and time consumed in learning about the complete topology. This application will eventually find the path with minimum number of hops. Simple Network Management Protocol (SNMP) is also used to monitor the sensor nodes remotely. This project was developed using nesC and C programming languages with TinyOS and UNIX based operating systems. It has been tested with a sufficient number of motes and evaluated based on the number of messages generated and number of hops traveled for each route request.
134

Integrating Wireless Sensor Technologies into Instrumentation and Telemetry Systems

Araujo, Maria S., Moodie, Myron L., Willden, Greg C., Thibodeaux, Ryan J., Abbott, Ben A. 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / Recent technological advancements in low-power, low-cost, small-footprint embedded processors, sensors, and radios are resulting in the very rapid growth of wireless sensor network deployments. Wireless sensor networks merge the scalability and distributed nature of networked systems with the size and energy constraints of remote embedded systems. With the ever increasing need to develop less intrusive, more scalable solutions for instrumentation systems, wireless sensor technologies present several benefits. They largely eliminate the need for power and network wiring, thus potentially reducing cost, weight, and deployment time; their modularity provides the flexibility to rapidly change instrumentation configurations and the capability to increase the coverage of an instrumentation system. While the benefits are exciting and varied, as with any emerging technology, many challenges need to be overcome before wireless sensor networks can be effectively and successfully deployed in instrumentation applications, including throughput, latency, power management, electromagnetic interference (EMI), and band utilization considerations. This paper describes some approaches to addressing these challenges and achieving a useful system.
135

Efficient Routing in Wireless Ad Hoc Networks

Huang, Huilong January 2008 (has links)
Routing is the fundamental problem for Wireless Ad hoc networks, including Wireless Mobile Ad hoc networks (MANETs) and Wireless Sensor networks (WSNs). Although the problem has been extensively studied in the past decade, the existing solutions have deficiencies in one or more aspects including efficiency, scalability, robustness, complexity, etc.This dissertation proposes several new solutions for routing in WSNs and MANETs. Spiral is a data-centric routing algorithm for short-term communication in unstructured static WSNs. Spiral is a biased walk that visits nodes near the source before more distant nodes. This results in a spiral-like search path that is not only more likely to find a closer copy of the desired data than random walk, but is also able to compute a shorter route because the network around the source is more thoroughly explored. Compared with existing flooding and random walk approaches, Spiral has a lower search cost than flooding and returns better routes than random walk.Closest Neighbor First Search (CNFS) is a query processing algorithm for mobile wireless sensor networks. It is also walk-based and biased to visit nodes close to the source first. Different from Spiral, CNFS collects topology information as the search progresses. The topology information is used to compute the shortest return path for the query result and to tolerate the network topology changes caused by node mobility, which could otherwise cause the query to fail. CNFS requires fewer messages to process a query than flooding-based algorithms, while tolerating node mobility better than random walk-based algorithms.Address Aggregation-based Routing (AAR) is a novel routing protocol designed for MANETs. It reactively performs route discovery, but proactively maintains an index hierarchy called a Route Discovery DAG (RDD) to make route discovery efficient. The RDD contains aggregated node address information, requiring fewer packets for route discovery than the flooding used in existing protocols, while handling mobility better than pre-computing routes to all nodes. Compared with some existing popular protocols, AAR shows better performance in delivery rate, message overhead, latency and scalability.
136

A FRAMEWORK FOR DATA DELIVERY IN INTEGRATED INTERNET OF THINGS ARCHITECTURES

Alfagih, ASHRAF 01 May 2013 (has links)
The Internet of Things (IoT) represents a networking paradigm where entities are viewed as objects that are identifiable, traceable and connected. This view requires the integration and interoperability of numerous wireless standards. Radio Frequency Identification (RFID) systems and Wireless Sensor Networks (WSNs) are two dominant technologies that jointly constitute a class of hybrid/integrated IoT architectures known as RFID-Sensor Networks (RSNs). Data delivery across such integrated architectures faces challenges in terms of cost-efficiency, scalability and connectivity, among many others. Moreover, IoT-driven solutions are required to address constraints on node mobility, delay-tolerance and resource management, and may have to adhere to an economic model in order to establish incentive-based schemes. Most available RSN solutions are tailored for a single-application and fail to address the aforementioned IoT constraints. To the best of our knowledge, a detailed framework that comprehensively addresses such constraints does not exist. We investigate this promising research direction by proposing a novel framework that incorporates an RSN integrated architecture to improve delivery over heterogeneous topologies. Our framework provides data delivery solutions that adhere to delivery and connectivity considerations of integrated RSN architectures in IoT. Moreover, our data delivery solutions incorporate pricing policies for incentive public sensing applications over the proposed architecture. We show, by theoretical analysis and simulations, that our framework outperforms rival RSN integration approaches, as well as other wireless Ad-hoc data delivery schemes in realizing IoT performance requirements. / Thesis (Ph.D, Computing) -- Queen's University, 2013-05-01 15:09:52.668
137

Integration of Wireless Sensor Networks Into a Commercial Off-the-Shelf (COTS) Multimedia Network.

Molineux, Jeffrey S. 25 July 2012
As the primary military operating environment shifts from the traditional battlefields to a more diverse urban environment, the use of remote wireless sensors is increasing. Traditional development and procurement methods are not capable of meeting the changing requirements and time constraints of commanders. To minimize the time to develop and deploy new systems, commercial solutions must be examined. The focus of this thesis is on the integration of Commercial Off-the-Shelf (COTS) components into a wireless multimedia sensor network. Because components from multiple vendors were utilized, different operating systems and transmission protocols had to be integrated across the network. The network must be capable of providing a varying Quality of Service (QoS) level depending on the active sensors in the network. To ensure the QoS level is met, an adaptive QoS algorithm was implemented in the wireless IEEE 802.11 router which monitored and measured the outgoing transmission interface; from which, it determined the latency and transmission jitter. Based on the results, the program can adjust the bandwidth as necessary. Finally, a user interface is developed that allows end users to monitor the network. The performance of the network is based on the end-to-end throughput, latency and jitter exhibited by the network.
138

Decision shaping and strategy learning in multi-robot interactions

Valtazanos, Aris January 2013 (has links)
Recent developments in robot technology have contributed to the advancement of autonomous behaviours in human-robot systems; for example, in following instructions received from an interacting human partner. Nevertheless, increasingly many systems are moving towards more seamless forms of interaction, where factors such as implicit trust and persuasion between humans and robots are brought to the fore. In this context, the problem of attaining, through suitable computational models and algorithms, more complex strategic behaviours that can influence human decisions and actions during an interaction, remains largely open. To address this issue, this thesis introduces the problem of decision shaping in strategic interactions between humans and robots, where a robot seeks to lead, without however forcing, an interacting human partner to a particular state. Our approach to this problem is based on a combination of statistical modeling and synthesis of demonstrated behaviours, which enables robots to efficiently adapt to novel interacting agents. We primarily focus on interactions between autonomous and teleoperated (i.e. human-controlled) NAO humanoid robots, using the adversarial soccer penalty shooting game as an illustrative example. We begin by describing the various challenges that a robot operating in such complex interactive environments is likely to face. Then, we introduce a procedure through which composable strategy templates can be learned from provided human demonstrations of interactive behaviours. We subsequently present our primary contribution to the shaping problem, a Bayesian learning framework that empirically models and predicts the responses of an interacting agent, and computes action strategies that are likely to influence that agent towards a desired goal. We then address the related issue of factors affecting human decisions in these interactive strategic environments, such as the availability of perceptual information for the human operator. Finally, we describe an information processing algorithm, based on the Orient motion capture platform, which serves to facilitate direct (as opposed to teleoperation-mediated) strategic interactions between humans and robots. Our experiments introduce and evaluate a wide range of novel autonomous behaviours, where robots are shown to (learn to) influence a variety of interacting agents, ranging from other simple autonomous agents, to robots controlled by experienced human subjects. These results demonstrate the benefits of strategic reasoning in human-robot interaction, and constitute an important step towards realistic, practical applications, where robots are expected to be not just passive agents, but active, influencing participants.
139

Source localization using wireless sensor networks

Tan, Kok Sin Stephen 06 1900 (has links)
Wireless sensors can be worn on soldiers or installed on vehicles to form distributed sensor networks to locate the source of sniper fire. A two-step source localization process is proposed for this sniper detection task. The time difference of arrival (TDOA) for the acoustic signals received by the sensors is first estimated using the generalized cross correlation (GCC) method. The estimated TDOA values are then used by the hybrid spherical interpolation/maximum likelihood (SI/ML) estimation method to estimate the shooter location. A simulation model has been developed in MATLAB to study the performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter. Simulation results indicate that the estimation accuracy can be increased by increasing the number of sensors or the inter-sensor spacing. The constraint of small inter-sensor spacing on wearable sensors is found to degrade the estimation accuracy, but vehicular configuration providing larger inter-sensor spacing can help improve the estimation accuracy. The sensor topology should be well represented in all three dimensions to obtain desired estimation accuracy. The estimation accuracy is not adversely affected by sensor node failures or location perturbations. The NS-2 simulation results indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.
140

Deployment of 802.15.4 sensor networks for C4ISR operations

Ngo, Damian N. 06 1900 (has links)
The applications of wireless sensor networks (WSNs) have risen in recent years both in the civilian and military sectors. While a number of WSN-based systems have been proposed and developed, vast majority of them focus on capability demonstration rather than the issues of deployment. As a result, even though the systems can serve useful purposes, they are very hard to deploy. The objective of this thesis is to focus on the deployment issues of WSNs. In addition, this thesis assesses the optimal configurations and environment that enables the sensor networks to thrive in a C4ISR environment. This thesis presents a technology review of the ZigBee and the IEEE 802.15.4 standards which form the core technology in WSNs. The thesis also discusses the IEEE 802.15.4 Physical and Media Access Control Layers that comprise the bottom two layers of WSNs. This thesis also provides a brief introduction to the hardware and software that deal with WSN technology. Lastly, this thesis evaluates the military applications of WSNs. It is hoped that the military can employ wireless sensors to increase situational awareness, attain information superiority, and improve decision-making.

Page generated in 0.0912 seconds