• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 80
  • 30
  • 19
  • 16
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 441
  • 441
  • 441
  • 80
  • 78
  • 73
  • 71
  • 63
  • 57
  • 54
  • 53
  • 46
  • 40
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Global-fit Clustering for Sensor Network

Chao, Chih-yang 30 January 2008 (has links)
Wireless Sensor Network (WSN) is composed of micro sensor nodes and it represents that they are small in size and cheap in cost but own limited capacity of computation and operation time. WSN is used to detect and sense events like temperature, earthquake, creature activities, atmospheric pressure and so on. By the property of wireless data transmission, WSN can be rapidly deployed and easily built up. In other hand, lifetime of WSN has been constrained by the batteries built in each sensor node. To transmit sensed data back to the base station spends the most energy for the WSN, and thus how to operate efficiently will be the key to extend the operating time of the WSN. There are a lot of related researches that proposed many routing protocols to maximize WSN lifetime and clustering is a proven routing protocol for WSN energy efficiency. The clustering method group nearby nodes together and choose one of them as a cluster-head that will transmit data back. The most important issue of clustering method is to choose which as a cluster-head. Usually, cluster-head will be chosen by probability and normal nodes will choose their own cluster-head by distance. Global-fit and Energy-Efficient (GFEE) algorithm, which is based on global-fit concept, is proposed to enhance lifetime of WSN. GFEE not only chooses cluster-head by probability and taking turns, but also bases on residual energy. All other nodes choose their cluster-head by distance and total energy consumption. Nodes with low power should be protected by some mechanisms. Experiments approved GFEE, especially in the situations of nodes widely spread or long distance transmission.
62

Relay Selection for Multiple Source Communications and Localization

Perez-Ramirez, Javier 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Relay selection for optimal communication as well as multiple source localization is studied. We consider the use of dual-role nodes that can work both as relays and also as anchors. The dual-role nodes and multiple sources are placed at fixed locations in a two-dimensional space. Each dual-role node estimates its distance to all the sources within its radius of action. Dual-role selection is then obtained considering all the measured distances and the total SNR of all sources-to-destination channels for optimal communication and multiple source localization. Bit error rate performance as well as mean squared error of the proposed optimal dual-role node selection scheme are presented.
63

An Opportunistic Relaying Scheme for Optimal Communications and Source Localization

Perez-Ramirez, Javier 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / The selection of relay nodes (RNs) for optimal communication and source location estimation is studied. The RNs are randomly placed at fixed and known locations over a geographical area. A mobile source senses and collects data at various locations over the area and transmits the data to a destination node with the help of the RNs. The destination node not only needs to collect the sensed data but also the location of the source where the data is collected. Hence, both high quality data collection and the correct location of the source are needed. Using the measured distances between the relays and the source, the destination estimates the location of the source. The selected RNs must be optimal for joint communication and source location estimation. We show in this paper how this joint optimization can be achieved. For practical decentralized selection, an opportunistic RN selection algorithm is used. Bit error rate performance as well as mean squared error in location estimation are presented and compared to the optimal relay selection results.
64

P-Percent Coverage in Wireless Sensor Networks

Sambhara, Chaitanya 20 November 2008 (has links)
Coverage in a Wireless Sensor Network reflects how well a sensor network monitors an area. Many times it is impossible to provide full coverage. The key challenges are to prolong the lifetime and ensure connectivity to provide a stable network. In this thesis we first define p-percent coverage problem in which we require only p% of the whole area to be monitored. We propose two algorithms, Connected P-Percent Coverage Depth First Search (CpPCA-DFS) and Connected P-Percent Connected Dominating Set (CpPCA-CDS). Through simulations we then compare and analyze them for their efficiency and lifetime. Finally in conclusion we prove that CpPCA-CDS provides 5 to 20 percent better active node ratio at low density. At high node density it achieves better distribution of covered area however the lifetime is only 5 to10 percent shorter then CpPCA-DFS. Overall CpPCA-CDS provides up to 30 percent better distribution of covered area.
65

A Novel Scalable Key Management Protocol for Wireless Sensor Networks

Rahman, Musfiq 26 March 2013 (has links)
Wireless Sensor Networks (WSNs) are ad-hoc networks consisting of tiny battery- operated wireless sensors. The sensor nodes are lightweight in terms of memory, computation, energy and communication. These networks are usually deployed in unsecured, open, and harsh environments, where it is difficult for humans to perform continuous monitoring. Consequently, it is very crucial to provide security mecha- nisms for authenticating data among sensor nodes. Key management is a pre-requisite for any security mechanism. Efficient distribution and management of keys in WSNs is a challenging task. Many standard key establishment techniques have been pro- posed using symmetric cryptosystems. Unfortunately, these systems often fail to pro- vide a good trade-off between memory and security and since WSNs are lightweight in nature, these cryptosystems are not feasible. On the other hand, public key in- frastructure (PKI) is infeasible in WSNs because of its continuous requirement of a trusted third party and heavy computational demands for certificate verification. Pairing-Based Cryptography (PBC) has paved the way for how parties can agree on keys without any interaction. It has relaxed the requirement of expensive certificate verification on PKI systems. In this thesis, we propose a new hybrid identity-based non-interactive key management protocol for WSNs, which leverages the benefits of both symmetric key based cryptosystems and pairing-based cryptosystems. The pro- posed protocol is scalable, suits many applications and can be deployed in multiple types of networks without modifications. We also provide mechanisms for key refresh when the network topology changes. A security analysis is presented to prove that the scheme is resilient to many types of attacks. To validate our scheme, we have implemented it on Crossbow TelosB motes running TinyOS and analyzed the perfor- mance in terms of memory, communication, computation and energy consumption. The results indicate that our scheme can be deployed efficiently to provide high level of security in a large-scale network without increasing memory, communication and energy overheads.
66

IntelliSensorNet: A Positioning Technique Integrating Wireless Sensor Networks and Artificial Neural Networks for Critical Construction Resource Tracking

Soleimanifar, Meimanat Unknown Date
No description available.
67

Histogram and median queries in wireless sensor networks

Ammar, Khaled A. Unknown Date
No description available.
68

Localization and Coverage in Wireless Ad Hoc Networks

Gribben, Jeremy 04 August 2011 (has links)
Localization and coverage are two important and closely related problems in wireless ad hoc networks. Localization aims to determine the physical locations of devices in a network, while coverage determines if a region of interest is sufficiently monitored by devices. Localization systems require a high degree of coverage for correct functioning, while coverage schemes typically require accurate location information. This thesis investigates the relationship between localization and coverage such that new schemes can be devised which integrate approaches found in each of these well studied problems. This work begins with a thorough review of the current literature on the subjects of localization and coverage. The localization scheduling problem is then introduced with the goal to allow as many devices as possible to enter deep sleep states to conserve energy and reduce message overhead, while maintaining sufficient network coverage for high localization accuracy. Initially this sufficient coverage level for localization is simply a minimum connectivity condition. An analytical method is then proposed to estimate the amount of localization error within a certain probability based on the theoretical lower bounds of location estimation. Error estimates can then be integrated into location dependent schemes to improve on their robustness to localization error. Location error estimation is then used by an improved scheduling scheme to determine the minimum number of reference devices required for accurate localization. Finally, an optimal coverage preserving sleep scheduling scheme is proposed which is robust to localization error, a condition which is ignored by most existing solutions. Simulation results show that with localization scheduling network lifetimes can be increased by several times and message overhead is reduced while maintaining negligible differences in localization error. Furthermore, results show that the proposed coverage preserving sleep scheduling scheme results in fewer active devices and coverage holes under the presence of localization error.
69

Data reliability control in wireless sensor networks for data streaming applications

Le, Dinh Tuan, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
This thesis contributes toward the design of a reliable and energy-efficient transport system for Wireless Sensor Networks. Wireless Sensor Networks have emerged as a vital new area in networking research. In many Wireless Sensor Network systems, a common task of sensor nodes is to sense the environment and send the sensed data to a sink node. Thus, the effectiveness of a Wireless Sensor Network depends on how reliably the sensor nodes can deliver their sensed data to the sink. However, the sensor nodes are susceptible to loss for various reasons when there are dynamics in wireless transmission medium, environmental interference, battery depletion, or accidentally damage, etc. Therefore, assuring reliable data delivery between the sensor nodes and the sink in Wireless Sensor Networks is a challenging task. The primary contributions of this thesis include four parts. First, we design, implement, and evaluate a cross-layer communication protocol for reliable data transfer for data streaming applications in Wireless Sensor Networks. We employ reliable algorithms in each layer of the communication stack. At the MAC layer, a CSMA MAC protocol with an explicit hop-by-hop Acknowledgment loss recovery is employed. To ensure the end-to-end reliability, the maximum number of retransmissions are estimated and used at each sensor node. At the transport layer, an end-to-end Negative Acknowledgment with an aggregated positive Acknowledgment mechanism is used. By inspecting the sequence numbers on the packets, the sink can detect which packets were lost. In addition, to increase the robustness of the system, a watchdog process is implemented at both base station and sensor nodes, which enable them to power cycle when an unexpected fault occurs. We present extensive evaluations, including theoretical analysis, simulations, and experiments in the field based on Fleck-3 platform and the TinyOS operating system. The designed network system has been working in the field for over a year. The results show that our system is a promising solution to a sustainable irrigation system. Second, we present the design of a policy-based Sensor Reliability Management framework for Wireless Sensor Networks called SRM. SRM is based on hierarchical management architecture and on the policy-based network management paradigm. SRM allows the network administrators to interact with the Wireless Sensor Network via the management policies. SRM also provides a self-control capability to the network. This thesis restricts SRM to reliability management, but the same framework is also applicable for other management services by providing the management policies. Our experimental results show that SRM can offer sufficient reliability to the application users while reducing energy consumption by more than 50% compared to other approaches. Third, we propose an Energy-efficient and Reliable Transport Protocol called ERTP, which is designed for data streaming applications in Wireless Sensor Networks. ERTP is an adaptive transport protocol based on statistical reliability that ensures the number of data packets delivered to the sink exceeds the defined threshold while reducing the energy consumption. Using a statistical reliability metric when designing a reliable transport protocol guarantees the delivery of adequate information to the users, and reduces energy consumption when compared to the absolute reliability. ERTP uses hop-by-hop Implicit Acknowledgment with a dynamically updated retransmission timeout for packet loss recovery. In multihop wireless networks, the transmitter can overhear a forwarding transmission and interpret it as an Implicit Acknowledgment. By combining the statistical reliability and the hop-by-hop Implicit Acknowledgment loss recovery, ERTP can offer sufficient reliability to the application users with minimal energy expense. Our extensive simulations and experimental evaluations show that ERTP can reduce energy consumption by more than 45% when compared to the state-of- the-art protocol. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended Wireless Sensor Network is increased. In Wireless Sensor Networks, sensor node failures can create network partitions or coverage loss which can not be solved by providing reliability at higher layers of the protocol stack. In the final part of this thesis, we investigate the problem of maintaining the network connectivity and coverage when the sensor nodes are failed. We consider a hybrid Wireless Sensor Network where a subset of the nodes has the ability to move at a high energy expense. When a node has low remaining energy (dying node) but it is a critical node which constitutes the network such as a cluster head, it will seek a replacement. If a redundant node is located in the transmission range of the dying node and can fulfill the network connectivity and coverage requirement, it can be used for substitution. Otherwise, a protocol should be in place to relocate the redundant sensor node for replacement. We propose a distributed protocol for Mobile Sensor Relocation problem called Moser. Moser works in three phases. In the first phase, the dying node determines if network partition occurs, finds an available mobile node, and asks for replacement by using flooding algorithm. The dying node also decides the movement schedule of the available mobile node based on certain criteria. The second phase of the Moser protocol involves the actual movement of the mobile nodes to approach the location of the dying node. Finally, when the mobile node has reached the transmission of the dying node, it communicates to the dying nodes and moves to a desired location, where the network connectivity and coverage to the neighbors of the dying nodes are preserved.
70

Distributed sensor fault detection and isolation over wireless sensor network

Jingjing, Hao 07 July 2017 (has links)
Wireless sensor networks (WSNs) can provide new methods for information gathering for a variety of applications. In order to ensure the network quality of service, the quality of the measurements has to be guaranteed. Distributed fault detection and isolation schemes are preferred to centralized solutions to diagnose faulty sensors in WSNs. Indeed the first approach avoids the need for a central node that collects information from every sensor node, and hence it limits complexity and energy cost while improving reliability.In the case of state estimation over distributed architectures, the sensor faults can be propagated in the network during the information exchanging process. To build a reliable state estimate one has to make sure that the measurements issued by the different sensors are fault free. That is one of the motivations to build a distributed fault detection and isolation (FDI) system that generates an alarm as soon as a measurement is subject to a fault (has drift, cdots ). In order to diagnose faults with small magnitude in wireless sensor networks, a systematic methodology to design and implement a distributed FDI system is proposed. It resorts to distinguishability measures to indicate the performance of the FDI system and to select the most suitable node(s) for information exchange in the network with a view to FDI. It allows one to determine the minimum amount of data to be exchanged between the different nodes for a given FDI performance. In this way, the specifications for FDI can be achieved while the communication and computation cost are kept as small as possible. The distributed FDI systems are designed both in deterministic and stochastic frameworks. They are based on the parity space approach that exploits spacial redundancy as well as temporal redundancy in the context of distributed schemes. The decision systems with the deterministic method and the stochastic method are designed not only to detect a fault but also to distinguish which fault is occurring in the network. A case study with a WSN is conducted to verify the proposed method. The network is used to monitor the temperature and humidity in a computer room. The distributed FDI system is validated both with simulated data and recorded data. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.1178 seconds