• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3985
  • 566
  • 498
  • 206
  • 200
  • 122
  • 105
  • 79
  • 61
  • 49
  • 34
  • 30
  • 25
  • 18
  • 15
  • Tagged with
  • 7067
  • 2706
  • 2586
  • 2445
  • 1818
  • 1510
  • 1324
  • 1093
  • 668
  • 608
  • 604
  • 599
  • 518
  • 505
  • 503
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Characterizing interference in wireless mesh networks.

January 2007 (has links)
Hui, Ka Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 123-126). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction / Motivation --- p.1 / Chapter 2 --- Literature Review --- p.6 / Chapter 2.1 --- Introduction --- p.6 / Chapter 2.2 --- The Capacity-Finding Problem --- p.6 / Chapter 2.3 --- Interference Models --- p.8 / Chapter 2.4 --- Considering Interference in the Capacity-Finding Problem with Perfect Scheduling --- p.9 / Chapter 2.4.1 --- Conflict Graph --- p.10 / Chapter 2.4.2 --- Independent Set Constraints --- p.11 / Chapter 2.4.3 --- Row Constraints --- p.11 / Chapter 2.4.4 --- Clique Constraints --- p.12 / Chapter 2.4.5 --- Using the physical model --- p.13 / Chapter 2.5 --- Considering Interference in the Capacity-Finding Problem with Random Access --- p.15 / Chapter 2.6 --- Chapter Summary --- p.17 / Chapter 3 --- Partial Interference - Basic Idea --- p.18 / Chapter 3.1 --- Introduction --- p.18 / Chapter 3.2 --- Deficiencies in Previous Models --- p.18 / Chapter 3.2.1 --- Multiple Interferers --- p.19 / Chapter 3.2.2 --- Non-binary Behavior of Interference --- p.19 / Chapter 3.2.3 --- Impractical Perfect Scheduling --- p.21 / Chapter 3.3 --- Refining the Relationship between Interference and Throughput Degradation --- p.21 / Chapter 3.4 --- Capacity Gain by Exploiting Partial Interference . --- p.23 / Chapter 3.5 --- Chapter Summary --- p.28 / Chapter 4 --- Partial Interference in 802.11 --- p.29 / Chapter 4.1 --- Introduction --- p.29 / Chapter 4.2 --- The 802.11 Model --- p.29 / Chapter 4.2.1 --- Assumptions --- p.30 / Chapter 4.2.2 --- Transmission Probability Calculation --- p.31 / Chapter 4.2.3 --- Packet Corruption Probability Calculation --- p.34 / Chapter 4.2.4 --- Loading Calculation --- p.35 / Chapter 4.2.5 --- Summary --- p.36 / Chapter 4.3 --- Some Analytical Results --- p.37 / Chapter 4.4 --- A TDM A/CDMA Analogy --- p.40 / Chapter 4.5 --- Admissible (Stability) Region --- p.42 / Chapter 4.6 --- Chapter Summary --- p.44 / Chapter 5 --- Partial Interference in Slotted ALOHA --- p.45 / Chapter 5.1 --- Introduction --- p.45 / Chapter 5.2 --- The Finite-Link Slotted ALOHA Model --- p.46 / Chapter 5.2.1 --- Assumptions --- p.46 / Chapter 5.2.2 --- Stability of Slotted ALOHA --- p.46 / Chapter 5.3 --- Stability Region of 2-Link Slotted ALOHA under Partial Interference --- p.47 / Chapter 5.4 --- Some Illustrations --- p.50 / Chapter 5.5 --- Generalization to the M-Link Case --- p.53 / Chapter 5.6 --- Chapter Summary --- p.58 / Chapter 6 --- FRASA --- p.59 / Chapter 6.1 --- Introduction --- p.59 / Chapter 6.2 --- The FRASA Model --- p.60 / Chapter 6.3 --- Validation of the FRASA Model --- p.66 / Chapter 6.3.1 --- Simulation Results --- p.66 / Chapter 6.3.2 --- Comparison to Previous Bounds --- p.72 / Chapter 6.4 --- Convex Hull Bound --- p.75 / Chapter 6.5 --- p-Convexity --- p.80 / Chapter 6.6 --- Supporting Hyperplane Bound --- p.86 / Chapter 6.7 --- Extension to Partial Interference --- p.89 / Chapter 6.7.1 --- FRASA under Partial Interference --- p.90 / Chapter 6.7.2 --- Convex Hull Bound --- p.93 / Chapter 6.7.3 --- p-Convexity --- p.97 / Chapter 6.7.4 --- Supporting Hyperplane Bound --- p.101 / Chapter 6.8 --- Chapter Summary --- p.102 / Chapter 7 --- Conclusion and Future Works --- p.110 / Chapter 7.1 --- Conclusion --- p.110 / Chapter 7.2 --- Future Works --- p.111 / Chapter A --- Proof of (4.13) in Chapter 4 --- p.113 / Bibliography --- p.123
102

Sistema de identificação e localização baseado em dispositivos de comunicações sem fios

Osório, Ricardo Manuel Moreira Marques January 2011 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Telecomunicações). Universidade do Porto. Faculdade de Engenharia. 2011
103

Autenticação de redes Wi-Fi recorrendo ao DNSSEC

Maia, Pedro Miguel Moreira January 2009 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 2009
104

Sistema de instrumentação distribuída suportado por rede sem fios

Pinheiro, Isabel Maria Gonçalves Fernandes Vaz January 2008 (has links)
Tese de mestrado. Engenharia Electrotécnica e de Computadores (Área de especialização de Automação industrial). Faculdade de Engenharia. Universidade do Porto. 2008
105

Wireless communication over NFC with a constrained resouce device

Raposo, André Filipe Mendes January 2010 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 2010
106

Production Control &=and Logistics

Correia, Pedro Osvaldo Oliveira Loureiro dos Santos January 2008 (has links)
Estágio realizado na Faurecia - Assentos de Automóvel, Ld.ª e orientado pelo Eng.ª Alexandra Ferrão / Tese de mestrado integrado. Engenharia Industrial e Gestão. Faculdade de Engenharia. Universidade do Porto. 2008
107

Capacity bounds for small-world and dual radio networks

Costa, Rui Filipe Mendes Alves da January 2007 (has links)
Tese de Mestrado. Informática. Faculdade de Ciências. Universidade do Porto. 2007
108

QoS Abstraction Layer in 4G Access Networks

Carneiro, Gustavo João Alves Marques January 2005 (has links)
Tese de Mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto. 2005
109

Development of a detection system using a wireless sensor network

Maciel, Bernardo Arede Amaro January 2008 (has links)
Estágio realizado no Royal Institute of Technology (KTH), Stockholm, Sweden e orientado pelo Prof. Doutor Karl Henrik Johansson / Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Automação. Faculdade de Engenharia. Universidade do Porto. 2008
110

Energy optimization for wireless sensor networks using hierarchical routing techniques

Abidoye, Ademola Philip January 2015 (has links)
Philosophiae Doctor - PhD / Wireless sensor networks (WSNs) have become a popular research area that is widely gaining the attraction from both the research and the practitioner communities due to their wide area of applications. These applications include real-time sensing for audio delivery, imaging, video streaming, and remote monitoring with positive impact in many fields such as precision agriculture, ubiquitous healthcare, environment protection, smart cities and many other fields. While WSNs are aimed to constantly handle more intricate functions such as intelligent computation, automatic transmissions, and in-network processing, such capabilities are constrained by their limited processing capability and memory footprint as well as the need for the sensor batteries to be cautiously consumed in order to extend their lifetime. This thesis revisits the issue of the energy efficiency in sensor networks by proposing a novel clustering approach for routing the sensor readings in wireless sensor networks. The main contribution of this dissertation is to 1) propose corrective measures to the traditional energy model adopted in current sensor networks simulations that erroneously discount both the role played by each node, the sensor node capability and fabric and 2) apply these measures to a novel hierarchical routing architecture aiming at maximizing sensor networks lifetime. We propose three energy models for sensor network: a) a service-aware model that account for the specific role played by each node in a sensor network b) a sensor-aware model and c) load-balancing energy model that accounts for the sensor node fabric and its energy footprint. These two models are complemented by a load balancing model structured to balance energy consumption on the network of cluster heads that forms the backbone for any cluster-based hierarchical sensor network. We present two novel approaches for clustering the nodes of a hierarchical sensor network: a) a distanceaware clustering where nodes are clustered based on their distance and the residual energy and b) a service-aware clustering where the nodes of a sensor network are clustered according to their service offered to the network and their residual energy. These approaches are implemented into a family of routing protocols referred to as EOCIT (Energy Optimization using Clustering Techniques) which combines sensor node energy location and service awareness to achieve good network performance. Finally, building upon the Ant Colony Optimization System (ACS), Multipath Routing protocol based on Ant Colony Optimization approach for Wireless Sensor Networks (MRACO) is proposed as a novel multipath routing protocol that finds energy efficient routing paths for sensor readings dissemination from the cluster heads to the sink/base station of a hierarchical sensor network. Our simulation results reveal the relative efficiency of the newly proposed approaches compared to selected related routing protocols in terms of sensor network lifetime maximization.

Page generated in 0.0589 seconds