Spelling suggestions: "subject:"wishart distribution"" "subject:"hishart distribution""
1 |
Statistiques des estimateurs robustes pour le traitement du signal et des images / Robust estimation analysis for signal and image processingDraskovic, Gordana 27 September 2019 (has links)
Un des défis majeurs en traitement radar consiste à identifier une cible cachée dans un environnement bruité. Pour ce faire, il est nécessaire de caractériser finement les propriétés statistiques du bruit, en particulier sa matrice de covariance. Sous l'hypothèse gaussienne, cette dernière est estimée par la matrice de covariance empirique (SCM) dont le comportement est parfaitement connu. Cependant, dans de nombreuses applications actuelles, tels les systèmes radar modernes à haute résolution par exemple, les données collectées sont de nature hétérogène, et ne peuvent être proprement décrites par un processus gaussien. Pour pallier ce problème, les distributions symétriques elliptiques complexes, caractérisant mieux ces phénomènes physiques complexes, ont été proposées. Dans ce cas, les performances de la SCM sont très médiocres et les M-estimateurs apparaissent comme une bonne alternative, principalement en raison de leur flexibilité par rapport au modèle statistique et de leur robustesse aux données aberrantes et/ou aux données manquantes. Cependant, le comportement de tels estimateurs reste encore mal compris. Dans ce contexte, les contributions de cette thèse sont multiples.D'abord, une approche originale pour analyser les propriétés statistiques des M-estimateurs est proposée, révélant que les propriétés statistiques des M-estimateurs peuvent être bien approximées par une distribution de Wishart. Grâce à ces résultats, nous analysons la décomposition de la matrice de covariance en éléments propres. Selon l'application, la matrice de covariance peut posséder une structure particulière impliquant valeurs propres multiples contenant les informations d'intérêt. Nous abordons ainsi divers scénarios rencontrés dans la pratique et proposons des procédures robustes basées sur des M-estimateurs. De plus, nous étudions le problème de la détection robuste du signal. Les propriétés statistiques de diverses statistiques de détection adaptative construites avec des M-estimateurs sont analysées. Enfin, la dernière partie de ces travaux est consacrée au traitement des images radar à synthèse d'ouverture polarimétriques (PolSAR). En imagerie PolSAR, un effet particulier appelé speckle dégrade considérablement la qualité de l'image. Dans cette thèse, nous montrons comment les nouvelles propriétés statistiques des M-estimateurs peuvent être exploitées afin de construire de nouvelles techniques pour la réduction du speckle. / One of the main challenges in radar processing is to identify a target hidden in a disturbance environment. To this end, the noise statistical properties, especially the ones of the disturbance covariance matrix, need to be determined. Under the Gaussian assumption, the latter is estimated by the sample covariance matrix (SCM) whose behavior is perfectly known. However, in many applications, such as, for instance, the modern high resolution radar systems, collected data exhibit a heterogeneous nature that cannot be adequately described by a Gaussian process. To overcome this problem, Complex Elliptically Symmetric distributions have been proposed since they can correctly model these data behavior. In this case, the SCM performs very poorly and M-estimators appear as a good alternative, mainly due to their flexibility to the statistical model and their robustness to outliers and/or missing data. However, the behavior of such estimators still remains unclear and not well understood. In this context, the contributions of this thesis are multiple.First, an original approach to analyze the statistical properties of M-estimators is proposed, revealing that the statistical properties of M-estimators can be approximately well-described by a Wishart distribution. Thanks to these results, we go further and analyze the eigendecomposition of the covariance matrix. Depending on the application, the covariance matrix can exhibit a particular structure involving multiple eigenvalues containing the information of interest. We thus address various scenarios met in practice and propose robust procedures based on M-estimators. Furthermore, we study the robust signal detection problem. The statistical properties of various adaptive detection statistics built with M-estimators are analyzed. Finally, the last part deals with polarimetric synthetic aperture radar (PolSAR) image processing. In PolSAR imaging, a particular effect called speckle significantly degrades the image quality. In this thesis, we demonstrate how the new statistical properties of M-estimators can be exploited in order to build new despeckling techniques.
|
2 |
Designing MIMO interference alignment networksNosrat Makouei, Behrang 25 October 2012 (has links)
Wireless networks are increasingly interference-limited, which motivates the development of sophisticated interference management techniques. One recently discovered approach is interference alignment, which attains the maximum sum rate scaling (with signal-to-noise ratio) in many network configurations. Interference alignment is not yet well understood from an engineering perspective. Such design considerations include (i) partial rather than complete knowledge of channel state information, (ii) correlated channels, (iii) bursty packet-based network traffic that requires the frequent setup and tear down of sessions, and (iv) the spatial distribution and interaction of transmit/receive pairs. This dissertation aims to establish the benefits and limitations of interference alignment under these four considerations.
The first contribution of this dissertation considers an isolated group of transmit/receiver pairs (a cluster) cooperating through interference alignment and derives the signal-to-interference-plus-noise ratio distribution at each receiver for each stream. This distribution is used to compare interference alignment to beamforming and spatial multiplexing (as examples of common transmission techniques) in terms of sum rate to identify potential switching points between them. This dissertation identifies such switching points and provides design recommendations based on severity of the correlation or the channel state information uncertainty.
The second contribution considers transmitters that are not associated with any interference alignment cooperating group but want to use the channel. The goal is to retain the benefits of interference alignment amid interference from the out-of-cluster transmitters. This dissertation shows that when the out-of-cluster transmitters have enough antennas, they can access the channel without changing the performance of the interference alignment receivers. Furthermore, optimum transmit filters maximizing the sum rate of the out-of-cluster transmit/receive pairs are derived. When insufficient antennas exist at the out-of-cluster transmitters, several transmit filters that trade off complexity and sum rate performance are presented.
The last contribution, in contrast to the first two, takes into account the impact of large scale fading and the spatial distribution of the transmit/receive pairs on interference alignment by deriving the transmission capacity in a decentralized clustered interference alignment network. Channel state information uncertainty and feedback overhead are considered and the optimum training period is derived. Transmission capacity of interference alignment is compared to spatial multiplexing to highlight the tradeoff between channel estimation accuracy and the inter-cluster interference; the closer the nodes to each other, the higher the channel estimation accuracy and the inter-cluster interference. / text
|
3 |
The development of the quaternion normal distributionLoots, Mattheus Theodor 27 June 2011 (has links)
In this dissertation an overview on the real representation of quaternions in distribution theory is given. The density functions of the p-variate and matrix-variate quaternion normal distributions are derived from first principles, while that of the quaternion Wishart distribution is derived from the real associated Wishart distribution via the characteristic function. Applications of this theory in hypothesis testing is presented, and the density function of Wilks's statistic is derived for quaternion Wishart matrices. / Dissertation (MSc)--University of Pretoria, 2010. / Statistics / unrestricted
|
4 |
關於多變量中球狀和主成份特徵值假設檢定之研究郭信霖, Guo, Xin-Lin Unknown Date (has links)
第一章為緒論。
第二章為多變量常態分配、球狀常態分配、威夏特(WISHART) 分配以及最大數化的
基本概念。
第三章為球狀檢定,討論其檢定的不變性、一火偏性以及在H下的動差和正合(EXAC
T)分配,最後以U─1檢定步驟來驗證球狀檢定。
第四章為一些均勻性變當數方法和球狀聯立檢定,將分別介紹L□檢定、M檢定以及
八種球狀聯立檢定之方法。
第五章為主畏成份檢定,將介紹一些最後K個特徵值相等的檢定方法以及實例分析。
第六章為結論,並說明其進一步研究的方向。
|
5 |
Essays on multivariate volatility and dependence models for financial time seriesNoureldin, Diaa January 2011 (has links)
This thesis investigates the modelling and forecasting of multivariate volatility and dependence in financial time series. The first paper proposes a new model for forecasting changes in the term structure (TS) of interest rates. Using the level, slope and curvature factors of the dynamic Nelson-Siegel model, we build a time-varying copula model for the factor dynamics allowing for departure from the normality assumption typically adopted in TS models. To induce relative immunity to structural breaks, we model and forecast the factor changes and not the factor levels. Using US Treasury yields for the period 1986:3-2010:12, our in-sample analysis indicates model stability and we show statistically significant gains due to allowing for a time-varying dependence structure which permits joint extreme factor movements. Our out-of-sample analysis indicates the model's superior ability to forecast the conditional mean in terms of root mean square error reductions and directional forecast accuracy. The forecast gains are stronger during the recent financial crisis. We also conduct out-of-sample model evaluation based on conditional density forecasts. The second paper introduces a new class of multivariate volatility models that utilizes high-frequency data. We discuss the models' dynamics and highlight their differences from multivariate GARCH models. We also discuss their covariance targeting specification and provide closed-form formulas for multi-step forecasts. Estimation and inference strategies are outlined. Empirical results suggest that the HEAVY model outperforms the multivariate GARCH model out-of-sample, with the gains being particularly significant at short forecast horizons. Forecast gains are obtained for both forecast variances and correlations. The third paper introduces a new class of multivariate volatility models which is easy to estimate using covariance targeting. The key idea is to rotate the returns and then fit them using a BEKK model for the conditional covariance with the identity matrix as the covariance target. The extension to DCC type models is given, enriching this class. We focus primarily on diagonal BEKK and DCC models, and a related parameterisation which imposes common persistence on all elements of the conditional covariance matrix. Inference for these models is computationally attractive, and the asymptotics is standard. The techniques are illustrated using recent data on the S&P 500 ETF and some DJIA stocks, including comparisons to the related orthogonal GARCH models.
|
Page generated in 0.1374 seconds