• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 10
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the function of VANGL2 in intestinal homeostasis & disease

Mellin, Ronan Peter January 2018 (has links)
Introduction: Van Gogh-Like 2 (VANGL2) is a scaffolding planar cell polarity protein involved in non-canonical Wnt signalling. It has been shown to have crucial roles in regulating epithelial development and homeostasis. Moreover, VANGL2 has been implicated in human cancers, with increased expression and copy number amplification seen in several cancer contexts. Many related components within this pathway have also been linked to cancer development, with VANGL2 expression known to regulate factors involved in cell migration and extracellular matrix (ECM) remodelling in cell lines. These cellular processes tend to be erroneously activated in cancer. VANGL2 is known to inhibit the classical driver pathway of colorectal cancer (CRC), canonical, or β- catenin dependant, Wnt signalling, in CRC cell lines. The aim of this thesis is to determine the expression of VANGL2 in CRC, and to investigate how VANGL2 may act to regulate intestinal homeostasis and disease. Methods: Transcriptional verification of VANGL2 expression in the mouse intestine was carried out by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR), and transcripts localised within the murine colon using RNA-In Situ Hybridisation (RNAISH). Expression and localisation of the VANGL2 protein and related non-canonical Wnt signalling components was confirmed using immuno-histochemistry (IHC). Furthermore, using a combination of human Tissue Micro-Array (TMA), transcriptional data and genomic data, we determined an association between VANGL2 on tumour grade and disease-free survival. To functionally validate the effects of VANGL2 on colorectal biology, we used a model in which VANGL2 is selectively deleted from the colonic epithelium using Villin-CreERT Vangl2flox mouse lines. Using a combination of molecular biology methods, we identified the ECM as differentially regulated following VANGL2 modulation. To test the role of VANGL2 in colorectal cancer, we used a murine colorectal cancer model in which adenomatous polyposis coli (APC) is deleted from colonic epithelium resulting in the formation of cancer concurrently with deletion of Vangl2. We evaluated survival of these mice as well as tumour number and size. Tumour tissue was analysed using IHC, qRT-PCR and 3-Dimensional organoid culture. Results: Within this thesis I have illustrated that the murine colonic epithelium expresses Vangl2, and other components known to interact with VANGL2 including Vangl1, Wnt5A, and Protein Tyrosine Kinase 7 (Ptk7). I have also shown that VANGL2 is expressed within the human colonic epithelium. I go on to show that 9.2% of human CRC possesses VANGL2 transcriptional alterations which correlates with a worsened disease-free survival (DFS) rate among patients. Using IHC, I also show that higher grade CRC is associated with increased VANGL2 expression. In our murine cancer model, mice with single or dual-copy loss of VANGL2 were found to have a reduced number of colonic tumours, while maintaining similar tumour size. Investigations to identify how VANGL2 may have control of tumour initiation were carried out focussing on the ECM. I found that, contrary to what I have discovered in the healthy murine colon, tumours from VANGL2-deficient mice had increased transcription of the ECM markers Secreted protein acidic and rich in cysteine (Sparc) and Decorin (Dcn), as well as increased expression of the ECM regulators Matrix Metallopeptidase 9 (Mmp9) and Tissue Inhibitor of Metalloproteinases 1 (Timp1). Changes in the ECM was also seen at the protein level, with increases in staining for the ECM components Col1 (Collagen, type I), and Laminin in VANGL2-deficient tissue. The ECM modulator Connective Tissue Growth Factor (Ctgf), is implicated in multiple cancers including CRC and is increased within VANGL2-deficient tumours at both the transcript and protein level, implicating Ctgf in increasing the ECM of these tumours.
2

Frizzled receptor 6 and risk of metastatic recurrence in early triple negative breast cancer

Corda, Gabriele January 2015 (has links)
WNT lipoglycoproteins (WNTs) modulate a plethora of cellular functions through the activation of the family of frizzled receptors (FZDs). Deregulation in components of the WNT signalling pathways is often observed in human cancers and associated with uncontrolled proliferation and metastasis. Frizzled receptor 6 (Fzd6), one of the ten human FZDs, is frequently overexpressed in cancer, but its role in tumorigenesis is still unclear. In this study we investigated the role Fzd6 in breast cancer. We found that expression of Fzd6 predicts distant relapse in patients with localised breast cancers, particularly in those bearing the triple negative subtype. Using a loss of function approach, we demonstrated that Fzd6 is important to regulate motility and invasion of breast cancer cells in vitro and in vivo. Indeed, Fzd6 regulates the tropism of breast cancer cells the bone, liver and heart of mice. Mechanistically, we found that Fzd6 signalling activates the small GTPase Rho and is important in the organisation of the fibronectin matrix. Both Rho and fibronectin have been previously implicated in the development of metastasis in different systems. All together, these results demonstrate that Fzd6 is an important driver of metastatic spread and a predictive marker of metastatic relapse in breast cancer patients. Fzd6 could therefore be used as a biomarker and target in metastatic breast cancer.
3

An investigation on the modulation of signalling transduction pathways during early Xenopus development

Zhang, Siwei January 2013 (has links)
The primary aim of my PhD thesis was to identify and characterise novel modulators of intracellular signalling during early vertebrate development. The first phase of my thesis was to design and execute a large-scale gain of function screen in order to identify novel modulators of various important signal transduction pathways during early Xenopus development. From this screen I identified twenty novel of growth factor signalling. In the second phase of my PhD study, I concentrated on the characterization and mode of action of one of the genes I identified in the screen; namely fezf2. I showed that Fezf2 regulates neurogenesis in the diencephalon by locally promoting Wnt signalling through repression of lhx2 and lhx9. Notably, this investigation on the function of fezf2 not only revealed the previously undiscovered role of fezf2-mediated Wnt regulatory mechanism during diencephalon development, but also confirmed our in vivo screening approach in identifying potential regulators of signalling pathways. To the end, my PhD project has provided me with a fruitful journey of discovery, which started with the design and execution of a large-scale screen, ending with the detailed characterization of a factor involved in the modulation of signalling and forebrain development. This study is has broadened our understanding of how intracellular and extracellular signals are integrated during embryonic development process, which forms an interactive network ultimately resulting in appropriate cell differentiation, organ formation, and regional patterning.
4

Mechanisms of molecular switching in the Wnt signal transduction pathway

Flack, Joshua Edwin January 2018 (has links)
Wnt signalling is a critical cellular communication pathway controlling cell fate in all metazoan organisms. Timely activation of this pathway is crucial to coordinate development, control homeostasis of adult tissues, and to avoid cancer. Wnt signal transduction depends primarily on the activities of three multiprotein complexes; the 'degradasome', which targets the central effector β-catenin for degradation in the absence of Wnt; the 'signalosome', which is assembled by Dishevelled upon Wnt-receptor binding to inactivate the degradasome, thus allowing β-catenin to accumulate; and the 'enhanceosome', which captures β-catenin, granting it access to target genes and relieving their transcriptional repression by Gro/TLE. Many of the components of these complexes have now been identified, but details of their regulation, and in particular the mechanisms by which they are switched on and off, remain poorly understood. The majority of this thesis is concerned with the mechanism by which β-catenin relieves the transcriptional repression imposed upon Wnt target genes, and thereby activates the Wnt 'transcriptional switch'. In Chapter 2, I present data showing that apposition of Gro/TLE and UBR5, a HECT E3 ubiquitin ligase, by β-catenin promotes Gro/TLE ubiquitylation, earmarking it for extraction by the VCP/p97 ATPase and ultimately leading to inactivation of its repressive function. In Chapter 3, I present the results of a different, ongoing study to identify the mechanism by which a cytoplasmic negative regulator, Naked, acts to interfere with the function of Dishevelled, promoting the switching of signalosomes and the termination of canonical Wnt signalling. These findings advance our understanding of the mechanisms by which the Wnt signalling pathway is switched on and off, and suggest new targets for therapeutic intervention in Wnt- driven cancers.
5

Wnt4 and Wnt6 secreted growth and differentiation factors and neural crest in the control of kidney development

Itäranta, P. (Petri) 18 June 2007 (has links)
Abstract Secreted signalling molecules are important for the regulation of developmental cell responses. In the developing kidney, signalling occurs between epithelial ureteric bud and metanephric mesenchyme and in between their derivatives. Wnt6 gene activity was localized to the ureteric bud and newly formed branches of the ureteric tree during early stages of kidney development. In a classic organ culture system, Wnt6 signalling induced the activation of marker genes for early nephrogenesis. The metanephric mesenchymes isolated from the Wnt4 deficient embryos were also induced, and the Wnt4 gene became activated in the presence of a Wnt6 signalling source. We propose that Wnt-6 is involved as a metanephric inducer and controls nephrogenesis. Wnt4 is essential for nephrogenesis in mouse and we indicate an additional role for Wnt4 in the control of periureteric stromal differentiation. A failure in vascular development was also found. Bmp4 expression in the medullar stroma of the Wnt4-deficient kidneys was absent concomitantly with a loss of expression of the smooth muscle marker, α-SMA. In vitro Wnt4 signalling induced Bmp4 expression and local α-SMA production. Hence, we conclude that lack of Wnt4 signalling leads to a loss of the periureteric smooth muscle cells, and Wnt4 may locally regulate this cell population in normal kidneys via regulation of Bmp4 signalling. The pluripotent neural crest cells are proposed to play regulatory roles in the early metanephros. Here, the use of transgenic animals allowed visualisation of the lumbo-sacral neural crest (NC) cells in close proximity to the early metanephros. The NC cells, however, disappeared in most part of the kidney by E12.5. The Splotch embryos lack the NCs from the early urogenital region. A developmental defect in the kidneys of Splotch embryos was not observed in vivo or in vitro. The results suggest that the neural crest is not essential for early embryonic kidney development. In sum, the work presented indicates an important role for Wnt6 in the induction of kidney tubules in vitro, for Wnt4 in the specification of kidney smooth muscle cells and for endothelial development in kidney. The neural crest cells apparently have no active morphogenetic role in early kidney development.
6

Cardiomyocyte-Specific Deletion of β-catenin Protects Mouse Hearts from Ventricular Arrhythmias After Myocardial Infarction

Wang, Jerry 01 September 2021 (has links)
Wnt/β-catenin signaling is activated in the heart after myocardial infarction (MI). This study aims to investigate if β-catenin deletion affects post-MI ion channel gene alterations and ventricular tachycardias (VT). MI was induced by permanent ligation of left anterior descending artery in wild-type (WT) and cardiomyocyte-specific β-catenin knockout (KO) mice. KO mice showed reduced susceptibility to VT (18% vs. 77% in WT) at 8 weeks after MI, associated with reduced scar size and attenuated chamber dilation. qPCR analyses of both myocardial tissues and purified cardiomyocytes demonstrated upregulation of Wnt pathway genes in border and infarct regions after MI, including Wnt ligands (such as Wnt4) and receptors (such as Fzd1 and Fzd2). At 1 week after MI, cardiac sodium channel gene (Scn5a) transcript was reduced in WT but not in KO hearts, consistent with previous studies showing Scn5a inhibition by Wnt/β-catenin signaling. At 8 weeks after MI when Wnt genes have declined, Scn5a returned to near sham levels and K⁺ channel gene downregulations were not different between WT and KO mice. This study demonstrated that VT susceptibility in the chronic phase after MI is reduced in mice with cardiomyocyte-specific β-catenin deletion primarily through attenuated structural remodeling, but not ion channel gene alterations.
7

Regulations of Sodium Channels by Wnt Signalling in Cardiomyocytes

Chu, Cencen 23 June 2022 (has links)
Background: The canonical Wnt/β-catenin pathway is activated in a variety of heart diseases, such as myocardial infarction and cardiac hypertrophy, that are associated with altered ion channel expressions and increased risk of cardiac arrhythmias. Previous work from our lab has demonstrated that the Wnt/β-catenin signalling (Wnt signalling) inhibits sodium (Na+) current in rat cardiomyocytes. In this project, we aim to investigate the mechanisms that underlie the inhibition of Na+ current by Wnt signalling in both rat and human cardiomyocytes. Results: In both neonatal rat ventricular myocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), activation of the Wnt/β-catenin signalling led to reduced level of Na+ channel gene transcript (Scn5a), channel protein (Nav1.5) and channel current density. This suggests that reduced Scn5a expression is likely the primary mechanism for reduced Na+ current. In addition, we found that activation of the Wnt/β-catenin signalling in both NRVMs and iPSC-CMs upregulated Tbx3 transcript and protein levels, which is a transcription factor that is known to suppress Scn5a transcription. In NRVMs, siRNA-mediated Tbx3 knockdown attenuated (by ~30%) Wnt-induced reductions in Scn5a and Nav1.5 levels. Conclusions: Our findings are consistent with the conclusion that Wnt/β-catenin signalling inhibits Na+ current in both rat and human cardiomyocytes by reducing Scn5a levels, with Tbx3 as one of the mediators.
8

Hypothalamic Wnt signalling and its role in energy balance regulation

Helfer, Gisela, Tups, A. 14 March 2016 (has links)
yes / Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders.
9

Notch signalling in carcinogenesis : With special emphasis on T-cell lymphoma and colorectal cancer

Ungerbäck, Jonas January 2009 (has links)
<p>The Notch signalling pathway is an evolutionary conserved pathway, named after the Notch receptors, Notch1-4 in mammals, which upon cell-cell contact and ligand binding releases the intracellular domain (NICD). NICD translocates into the nucleus where it binds the transcriptional repressor RBP-Jk, which together with co-activators belonging to the Mastermind-like family of proteins form a transcriptional activation complex. This complex activates genes controlling cell fate decision, embryonic development, proliferation, differentiation, adult homeostasis and stem cell maintenance. On the other hand, disrupted Notch signalling may result in pathological conditions like cancer, although the mechanisms behind the disruption are often complex and in many cases largely unknown.</p><p>Notch1 drives the lymphocyte differentiation towards a T-cell fate and activating mutations in the gene have been suggested to be involved in T-cell lymphoma. In <em>paper I, </em>genetic alterations in <em>Notch1 </em>and the Notch1 regulating gene <em>CDC4 </em>were investigated in tumours from murine T-cell lymphoma induced with phenolphthalein, 1,3-butadiene or 2’,3’-dideoxycytidine. We identified activating <em>Notch1</em> mutations in 39% of the lymphomas, suggesting that <em>Notch1 </em>is<em> </em>an important target gene for mutations in chemically induced lymphomas.<em></em></p><p>While it is known that constitutively activated Notch signalling has a clear oncogenic function in several solid malignancies as well, the molecular mechanisms are less known in this context. Unpublished data of our lab, together with other recent studies, suggest that mutations of Notch and Notch-related genes <em>per se</em> are uncommon in solid malignancies including colorectal cancer, while a growing body of evidence indicates that aberrant Wnt/b-catenin signalling may result in pro-tumoural Notch activation in these contexts. In <em>paper II</em>, we therefore investigated potential transcriptional interactions between the Notch and Wnt signalling pathways in colorectal cancer cell lines. The proximal Notch and Wnt pathway gene promoters were bioinformatically identified and screened for putative TCF/LEF1 and RBP-Jk sites. In canonical Wnt signalling, Apc negatively regulates b-catenin leading to repression of TCF/LEF1 target genes. Upon repression of the Wnt pathway we observed that several genes in the Notch pathway, including <em>Notch2</em>, were transcriptionally downregulated. We also confirmed binding of Lef1 to <em>Notch2</em> as well as other Notch pathway gene promoters and luciferase assays showed an increased activity for at least one LEF1/TCF-site in the <em>Notch2</em> promoter upon co-transfection of HT29 or HCT116 cells with mutated b-catenin. HT29 cell lines were also treated with the g-secretase inhibitor DAPT, leading to inactivation of the Notch pathway by preventing release of NICD. However, results showed no effects on Apc, b-catenin or their target <em>cyclin D1</em>. Taken together, these results indicate that the Wnt pathway may function as a regulator of the Notch pathway through the TCF/LEF1 target gene program in colon cancer cell lines.</p><p>In summary, Notch pathway deregulation is of importance in both murine T-cell lymphoma and human colorectal cancer, although the mechanisms differ. The current results give new insights in Notch pathway alterations as well as the signalling networks in which the Notch pathway interacts, and thus increase the understanding of Notch’s involvement in malignant diseases.</p> / Studies on molecular genetic alterations in colorectal cancer
10

Examination of Expression and Function of TCF Genes in the Pancreatic Islets

Columbus, Joshua 17 December 2010 (has links)
Specific SNPs in intronic regions of the human TCF7L2 gene are associated with an elevated risk of T2D development and progression. Several investigations have suggested a role of TCF7L2 in pancreatic β-cells. Whether this transcription factor is indeed expressed in the pancreatic islets of rodent species, however, has been a controversial issue. Here, we found that TCF7L2 mRNA level was significantly lower in the pancreas compared to the gut or Ins-1 cell line. In addition, TCF7L2 mRNA abundance in the pancreas was decreased by insulin. Finally, both TCF7 and TCF7L1 but not LEF-1 could be detected in the mouse pancreas. mRNA abundance for these two transcription factors was also decreased by insulin, and the level of TCF7, TCF7L1, and TCF7L2 mRNAs could be down-regulated by HFD. We speculate that reduced expression of these TCF genes during hyperinsulinemia may alter the Wnt signalling pathway and therefore impair the function of β-cells.

Page generated in 0.0733 seconds