• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 9
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Southern Wolf-Rayet stars

Smith, Henry Joseph. January 1955 (has links)
Thesis--Harvard University. / Includes bibliographical references (leaves 192-196).
2

The line of sight toward the SMC star Sk 108 /

Mallouris, Christoforos. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Astronomy & Astrophysics, June 2002. / Includes bibliographical references. Also available on the Internet.
3

The Wolf-Rayet Star Population of the Milky Way Galaxy

Kanarek, Graham Childs January 2017 (has links)
Wolf-Rayet (WR) stars are a late stage in the evolution of massive stars (M ≥ 25 M⊙), characterized by strong stellar winds (dM/dt ~ 10−5 M⊙/yr). Ionizing radiation from the central star heats the expanding outer envelope of material, leading to recombination emission lines of helium, carbon, nitrogen, oxygen, and/or hydrogen in the WR star spectrum. This outflow of material enriches the surrounding ISM, which is further enriched when the WR star likely explodes as a type Ib or Ic supernova. WR stars are also likely progenitors for long soft gamma-ray bursts, and they are excellent tracers of the present sites of massive star formation in our Galaxy. The current Galactic WR star catalog is very incomplete. I discuss three methods of selecting strong WR star candidates from crowded fields in the Galactic plane: image subtraction, narrowband (NB) color, and broadband (BB) color. Using these methods, an extensive near-infrared narrowband survey begun in 2005-2006, and extended by me, has yielded 28% of the known Galactic WR stars to date; I add 59 new WR stars to the total in this thesis. I then compare two recent models of the Galactic population of WR stars, discuss the implications with respect to how many WR stars remain to be found, and use these results to inform an analysis of the remaining 834 strong carbon-rich WC star candidates from the survey. I also provide a listing of these 834 WC star candidates throughout our Galaxy, and map them; a central result of this thesis. Finally, I present selection criteria which may be used to identify [WR] stars (central stars of planetary nebulae which display WR spectral features), and proof of concept observations which led to 7 new confirmed [WC] stars.
4

Polarization Variability Due to Clumps in the Winds of Wolf-Rayet Stars

Li, Q., Cassinelli, J. P., Brown, J. C., Ignace, Richard 29 May 2012 (has links)
Wolf-Rayet (WR) stars are understood to have clumpy winds [1]. Robert et al. [2] found a statistical relation between the variations of the polarization and the scattering light intensity, R = σ p/σ phot ≈ 0.05. To explain this result, we propose a model in which clumps are ejected from the surface of WR stars uniformly in space with a Gaussian time interval distribution. According to the observed R along with the subpeaks on the emission lines of WR stars, we can obtain the parameters of the velocity law index β, and of the clump ejection rate in a flow time N. Also, the fraction η of the total mass loss rate contained in the clumps can be found from the observed polarization.
5

Colliding winds in Wolf-Rayet binaries

Setia Gunawan, Diah Yudiawati Anggraeni. January 2001 (has links)
Thesis (doctoral)--Rijksuniversiteit Groningen, 2001. / "Stellingen" and errata slip inserted at front. Includes bibliographical references (p. 181-190. [Author's] Publications: p. 191-193).
6

Polarization Variability Arising from Clumps in the Winds of Wolf-Rayet Stars.

Li, Qing-Kang, Cassinelli, Joseph, Brown, John, Ignace, Richard 01 May 2009 (has links) (PDF)
The polarimetric and photometric variability of Wolf-Rayet (WR) stars as caused by clumps in the winds, is revisited. In the model which is improved from Li et al. 2000, the radial expansion of the thickness is accounted for, but we retain the dependence on the beta velocity law, stellar occultation effects. We again search for parameters that can yield results consistent with observations in regards to the mean polarization, the ratio of polarimetric to photometric variability, and the volume filling factor. Clump generation and spatial distribution are randomized by the Monte Carlo method so as to produce clumps which are, in the mean, distributed uniformly in space and have time intervals with a Gaussian distribution. The generated clumps move radially outward with a velocity law determined by a beta index, and the angular size of the clumps is assumed to keep fixed. By fitting the observational results and the volume filling factor, the clump velocity law index beta and clump ejection rate are inferred, and are found to be well constrained. In addition, the subpeak features on broad emission lines seem to support the clump ejection rate. Meanwhile, the fraction of the total mass loss rate that is contained in the clumps is obtained by fitting the observed polarization. We conclude that this picture for the clump properties produces a valuable diagnostic of WR wind structure.
7

Neon Abundances from a Spitzer/IRS Survey of Wolf-Rayet Stars.

Ignace, Richard, Cassinelli, J., Tracy, G., Churchwell, E., Lamers, H. J. 01 November 2007 (has links) (PDF)
We report on neon abundances derived from Spitzer high resolution spectral data of eight Wolf-Rayet (WR) stars using the forbidden line of [Ne III] 15.56 μm. Our targets include four WN stars of subtypes 4–7, and four WC stars of subtypes 4–7. We derive ion fraction abundances γ of Ne2+ for the winds of each star. The ion fraction abundance is a product of the ionization fraction Qi in stage i and the abundance by number AE of element E relative to all nuclei. Values generally consistent with solar are obtained for the WN stars, and values in excess of solar are obtained for the WC stars.
8

V444 Cygni X-Ray and Polarimetric Variability: Radiative and Coriolis Forces Shape the Wind Collision Region

Lomax, J. R., Nazé, Y., Hoffman, J. L., Russell, C. M.P., De Becker, M., Corcoran, M. F., Davidson, J. W., Neilson, H. R., Owocki, S., Pittard, J. M., Pollock, A. M.T. 01 January 2015 (has links)
We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3D nature of the shock and wind structure within the system. We have created the most complete X-ray light curve of V444 Cyg to date using 40 ks of new data from Swift, and 200 ks of new and archived XMM-Newton observations. In addition, we have characterized the intrinsic, polarimetric phase-dependent behavior of the strongest optical emission lines using data obtained with the University of Wisconsin's Half-Wave Spectropolarimeter. We have detected evidence of the Coriolis distortion of the wind-wind collision in the X-ray regime, which manifests itself through asymmetric behavior around the eclipses in the system's X-ray light curves. The large opening angle of the X-ray emitting region, as well as its location (i.e. the WN wind does not collide with the O star, but rather its wind) are evidence of radiative braking/inhibition occurring within the system. Additionally, the polarimetric results show evidence of the cavity the wind-wind collision region carves out of the Wolf-Rayet star's wind.
9

Étude de la variabilité spectroscopique d’un échantillon d’étoiles Wolf-Rayet de type WC9

Desforges, Sébastien 08 1900 (has links)
Nous savons que la grande majorité des étoiles WC9 produit de la poussière à base de carbone. Cette dernière doit se former dans des zones de très haute densité afin de survivre à l’environnement hostile qu’est celui du vent d’une étoile WR. Les étoiles WC appartenant à un système binaire WR + O produisent de la poussière quand les vents des deux étoiles entrent en collision et forment une zone de choc pouvant augmenter la densité du gaz d’un facteur 1000. Par contre, plusieurs étoiles WC9 n’ont, à ce jour, montré aucun signe de la présence d’un compagnon. Le but du projet est de tenter d’identifier un mécanisme alternatif responsable de la formation de poussière dans les étoiles WC9 n’appartenant pas à un système binaire. Nous présentons les résultats d’une campagne d’observation visant à caractériser la variabilité spectroscopique d’un échantillon de huit étoiles WC9 et une étoile WC8d. Nos résultats indiquent que la majorité des étoiles montrent des variations à grande échelle dans la raie d’émission C III 5696, soit à un niveau d’au moins 5% du flux de la raie et que les structures dans le vent ont une dispersion de vitesses de l’ordre de 150-300 km/s. De manière générale, les variations de vitesse radiales sont anti-corrélées avec le coefficient d’asymétrie de la raie, ce qui semble infirmer la présence d’un compagnon. Des observations en photométrie de l’étoile WR103 montrent une période de 9.1 ± 0.6 jours qui s’accorde avec les variations spectroscopiques et qui ne semble pas, de manière évidente, d’origine binaire. / We know that the majority of WC9 stars produces carbon-based dust. To survive in the hot and harsh environement that is the wind of a WR star, the dust grains must be formed in regions of very high density. We know that WC stars that are part of a WR + O system can produce dust at periastron passage where the collision of the two stellar winds is strong enough to produce shocks that compress the gas to densities up to a factor 103 higher than that of the WR star. However, so far, many WC9 stars have shown no signs of a companion. The goal of the current project is to identify a mechanism that could be responsible for the formation of dust in single WC9 stars. We present the results of an observing campaign which aimed to characterize the spectroscopic variability of eight WC9 stars and one WC8d star. Our results indicate that most stars show large scale variations of their C III 5696 emission line that reach at least 5% of the total line flux, and that the structures in the wind have a mean velocity dispersion of 150-300 km/s. In general, the radial velocity variations are anti-correlated with the skewness variations. This seems to indicate that the variations are not due to the presence of a companion. Photometric observations of WR 103 show a period of 9.1 ± 0.6 days that agrees with the spectroscopic variations and does not seem from binary origin.
10

Hydrogen-deficient central stars of planetary nebulae

Todt, Helge January 2009 (has links)
Central stars of planetary nebulae are low-mass stars on the brink of their final evolution towards white dwarfs. Because of their surface temperature of above 25,000 K their UV radiation ionizes the surrounding material, which was ejected in an earlier phase of their evolution. Such fluorescent circumstellar gas is called a "Planetary Nebula". About one-tenth of the Galactic central stars are hydrogen-deficient. Generally, the surface of these central stars is a mixture of helium, carbon, and oxygen resulting from partial helium burning. Moreover, most of them have a strong stellar wind, similar to massive Pop-I Wolf-Rayet stars, and are in analogy classified as [WC]. The brackets distinguish the special type from the massive WC stars. Qualitative spectral analyses of [WC] stars lead to the assumption of an evolutionary sequence from the cooler, so-called late-type [WCL] stars to the very hot, early-type [WCE] stars. Quantitative analyses of the winds of [WC] stars became possible by means of computer programs that solve the radiative transfer in the co-moving frame, together with the statistical equilibrium equations for the population numbers. First analyses employing models without iron-line blanketing resulted in systematically different abundances for [WCL] and [WCE] stars. While the mass ratio of He:C is roughly 40:50 for [WCL] stars, it is 60:30 in average for [WCE] stars. The postulated evolution from [WCL] to [WCE] however could only lead to an increase of carbon, since heavier elements are built up by nuclear fusion. In the present work, improved models are used to re-analyze the [WCE] stars and to confirm their He:C abundance ratio. Refined models, calculated with the Potsdam WR model atmosphere code (PoWR), account now for line-blanketing due to iron group elements, small scale wind inhomogeneities, and complex model atoms for He, C, O, H, P, N, and Ne. Referring to stellar evolutionary models for the hydrogen-deficient [WC] stars, Ne and N abundances are of particular interest. Only one out of three different evolutionary channels, the VLTP scenario, leads to a Ne and N overabundance of a few percent by mass. A VLTP, a very late thermal pulse, is a rapid increase of the energy production of the helium-burning shell, while hydrogen burning has already ceased. Subsequently, the hydrogen envelope is mixed with deeper layers and completely burnt in the presence of C, He, and O. This results in the formation of N and Ne. A sample of eleven [WCE] stars has been analyzed. For three of them, PB 6, NGC 5189, and [S71d]3, a N overabundance of 1.5% has been found, while for three other [WCE] stars such high abundances of N can be excluded. In the case of NGC 5189, strong spectral lines of Ne can be reproduced qualitatively by our models. At present, the Ne mass fraction can only be roughly estimated from the Ne emission lines and seems to be in the order of a few percent by mass. Furthermore, using a diagnostic He-C line pair, the He:C abundance ratio of 60:30 for [WCE] stars is confirmed. Within the framework of the analysis, a new class of hydrogen-deficient central stars has been discovered, with PB 8 as its first member. Its atmospheric mixture resembles rather that of the massive WNL stars than of the [WC] stars. The determined mass fractions H:He:C:N:O are 40:55:1.3:2:1.3. As the wind of PB 8 contains significant amounts of O and C, in contrast to WN stars, a classification as [WN/WC] is suggested. / Zentralsterne Planetarischer Nebel sind massearme Sterne kurz vor ihrer finalen Entwicklung zu Weißen Zwergen. Aufgrund ihrer Oberflächentemperatur von über 25 000 K sind sie in der Lage, durch Abstrahlung von UV-Licht das sie umgebende Material, welches in einer vorigen Phase ihrer Entwicklung abgestoßen wurde, zu ionisieren. Das solchermaßen zum Leuchten angeregte Gas bezeichnet man als Planetarischen Nebel. Etwa ein Zehntel der galaktischen Zentralsterne sind wasserstoffarm. Im Allgemeinen besteht die Oberfläche dieser Zentralsterne aus einer Mischung der Elemente Helium, Kohlenstoff und Sauerstoff, welche z.T. durch Heliumbrennen erzeugt wurden. Die meisten dieser Sterne haben darüberhinaus einen starken Sternwind, ähnlich den massereichen Pop-I-Wolf-Rayet-Sternen und werden in Analogie zu diesen als [WC] klassifiziert, wobei die eckigen Klammern der Unterscheidung von den massereichen WC-Sternen dienen. Qualitative Analysen der Spektren von [WC]-Sternen lassen eine Entwicklungssequenz dieser Sterne von kühleren sogenannten late-type [WC]-Sternen (kurz [WCL]) zu sehr heißen, early-type [WC]-Sternen (kurz [WCE]) vermuten. Mithilfe von Computerprogrammen, die den Strahlungstransport im mitbewegten Beobachtersystem zusammen mit den statistischen Gleichungen der Besetzungszahlen der Ionen im Sternwind rechnen können, wurden quantitative Untersuchungen der Winde von [WC]-Sternen möglich. Erste Analysen mit Modellen ohne Eisenlinien ergaben dabei systematisch unterschiedliche Häufigkeiten für [WCL]- und [WCE]-Sterne. Während sich für [WCL]-Sterne ein Verhältnis der Massenanteile von He:C von etwas 40:50 ergab, fand man für die [WCE]-Sterne ein mittleres Verhältnis von 60:30 für die He:C-Massenanteile. Dabei sollte die Entwicklung von [WCL] nach [WCE] innerhalb einer sehr kurzen Zeit durch Aufheizung infolge der Kontraktion der Hülle erfolgen und nicht mit einer wesentlichen Abnahme der Kohlenstoffhäufigkeit bei gleichzeitiger Zunahme der Heliumhäufigkeit an der Oberfläche einhergehen. Im Rahmen der vorgelegten Arbeit wird untersucht, ob sich mittels verbesserter Modelle für die Atmosphären von [WC]-Sternen das He:C-Häufigkeitsverhältnis der [WCE]-Sterne bestätigt. Elaboriertere Modelle, welche vom Potsdamer WR-Modelatmosphären-Code (PoWR) berechnet werden können, berücksichtigen Line-Blanketing aufgrund von Elementen der Eisengruppe, kleinskalige Windinhomogenitäten und die Elemente He, C, O, H, P, N und Ne. Unter Bezug auf Sternentwicklungsmodelle, die die Ursache der Wasserstoffunterhäufigkeit von [WC]-Sternen erklären, sind insbesondere die Neon- und Stickstoff-Häufigkeiten interessant. Von den drei möglichen Entwicklungskanälen für [WC]-Sterne führt lediglich das VLTP-Szenario zu einer Stickstoff-Überhäufigkeit von einigen Prozent bezogen auf die Masse. Bei einem VLTP, einem very late thermal pulse, handelt es sich um einen plötzlichen, starken Anstieg der Energieproduktion in der helium-brennenden Schale, während das Wasserstoffbrennen bereits zum Erliegen gekommen ist. Infolge eines VLTPs wird sämtlicher Wasserstoff kurz nach dem thermischen Puls in tiefere Schichten gemischt und in Anwesenheit von C, He und O verbrannt. Infolgedessen wird N und auch Ne erzeugt. Bei der Analyse von elf [WCE]-Sternen wurden für drei von ihnen, PB 6, NGC 5189 und [S71d]3, Stickststoffmassenanteile von 1,5 % bestimmt, während für drei andere Sterne solche hohen Stickstoffhäufigkeiten ausgeschlossen werden können. Für NGC 5189 gelang außerdem die qualitative Reproduktion der beobachteten, starken Ne-Spektrallinien mittels unserer Modelle. Zur Zeit lässt sich aus der Stärke der Ne-Emissionslinien der Ne-Massenanteil leider nur abschätzen, er scheint aber im Bereich einiger Prozent zu liegen. Mittels eines diagnostischen He-C-Linienpaares konnte das He:C-Massenverhältnis von 60:30 für [WCE]-Sterne bestätigt werden. Als Ergebnis der Analyse von PB 8 postulieren wir eine neue Klasse von wasserstoffarmen Zentralsternen, die in ihrer Elementzusammensetzung eher an massereiche WNL-Sterne als an [WC]-Sterne erinnern. Die ermittelten Massenanteile H:He:C:N:O betragen 40:55:1.3:2:1.3, der Wind von PB 8 enthält daher im Unterschied zu WN-Sternen signifikante Mengen von O und C. Es wird daher eine Klassifizierung als [WN/WC] vorgeschlagen.

Page generated in 0.0367 seconds