Spelling suggestions: "subject:"good pyrolysis"" "subject:"food pyrolysis""
1 |
Toxic Gas and Particulates Characterization in a Smoke Density ChamberMatsuyama, Yumi 23 May 2019 (has links)
No description available.
|
2 |
Fire smoke and combustion characterization of materials in an enclosed chamberMatsuyama, Yumi January 2021 (has links)
No description available.
|
3 |
Contribution à l'industrialisation d'un procédé de gazéification / Contribution to the industrialisation of a gasification processLe Dirach, Jocelyn 16 June 2008 (has links)
La diversification des sources d’énergies s’appuyant sur les énergies renouvelables doit contribuer à réduire la part des énergies fossiles dans la production d’électricité, en accord avec les directives européennes qui prévoient, pour la France de produire 21% de notre énergie à partir d’EnR en 2010.Les travaux rapportés dans ce mémoire s’attachent à l’industrialisation d’un procédé de gazéification de bois en vue de la production de chaleur et d’électricité. Des expériences de pyrolyse rapide de bois ont été menées sous diverses conditions expérimentales (densité de flux entre 0.9 et 6.3 MW/m², humidité entre 0 et 60%) pour comprendre et analyser les phénomènes fondamentaux impliqués lors de la gazéification du bois. Les divers produits (char, vapeurs et gaz) sont récupérés et analysés. Les résultats permettent de déterminer les rendements en chacun des produits pour différentes conditions expérimentales.La modélisation numérique du phénomène de pyrolyse du bois a ainsi été réalisée en se basant sur les données cinétiques fournies par la littérature puis comparée aux résultats expérimentaux. Même s’il n’y a pas concordance parfaite, les ordres de grandeur sont respectés. Ces modèles servent de base à la modélisation d’un réacteur de gazéification basé sur le réacteur DFB de Güssing incorporant la description hydrodynamique, la pyrolyse du bois, la gazéification du char et les réactions des vapeurs et des gaz. Ce modèle permet ainsi de déterminer l’efficacité du réacteur et ses différents paramètres opératoires.Mots clés : bois, pyrolyse, gazéification, processus élémentaires, modélisation, Güssing, énergies renouvelables, lit fluidisé circulant, génie des procédés / Diversification of energy sources based on renewable energies must contribute to reduce the share of fossil fuels in power generation, in agreement with the European directives which impose to France to generate 21% of its energy from renewable energies before 2010.The present work reported in this manuscript focus on the industrialization of a wood gasification process for the production of heat and electricity. Experiments of wood fast pyrolysis were performed under various experimental conditions (flux density between 0.9 and 6.3 MW/m2, moisture between 0 and 60%) for understanding and analysis of fundamental phenomena related to the gasification of wood. The various products (char, condensible vapours and gases) are recovered and analyzed. The results help to determine the yields of each of the products for various experimental conditions.The numerical modeling of wood pyrolysis phenomena has been achieved on the basis of kinetic data found through literature review and then compared to the experimental results. Even if there is no perfect agreement, orders of magnitude are respected. These models are used as a basis to develop a gasification reactor model for Güssing DFB reactor, including the hydrodynamics description, wood pyrolysis, char gasification, vapours and gases reactions. This model is used to determine the efficiency of the reactor and its various operating parameters
|
4 |
Expermental and Modeling Studies on the Generation of Hydrogen Rich Syngas through Oxy-Steam Gasification of BiomassSandeep, Kumar January 2016 (has links) (PDF)
The present work focuses on the study of biomass gasification process for generating hydrogen rich synthetic gas with oxy-steam as reactants using experiments and modeling studies. Utilization of the syngas as a fuel in general applications like fuel cells, Fischer-Tropsch FT) process and production of various chemicals like DME, etc. are being considered to meet the demand for clean energy.
This study comprises of experiments using an open top down draft reactor with oxygen and steam as reactants in the co-current configuration. Apart from the standard gasification performance evaluation; parametric study using equivalence ratio, steam-to-biomass ratio as major variables towards generation of syngas is addressed towards controlling H2/CO ratio. The gasification process is modeled as a packed bed reactor to predict the exit gas composition, propagation rate, bed temperature as a function of input reactants, temperature and mass flux with variation in thermo-physical properties of biomass. These results are compared with the present experiments as well as those in literature.
Experiments are conducted using modified open top downdraft configuration reactor with lock hoppers and provision for oxy-steam injection, and the exit gas is connected to the cooling and cleaning system. The fully instrumented system is used to measure bed temperatures, steam and exit gas temperature, pressures at various locations, flow rates of fuel, reactants and product gas along with the gas composition. Preliminary investigations focused on using air as the reactant and towards establishing the packed bed performance by comparing with the experimental results from the literature and extended the study to O2-N2 mixtures. The study focuses on determining the propagation rate of the flame front in the packed bed reactor for various operating conditions. O2 is varied between 20-100% (vol.) in a mixture of O2-N2 to study the effect of O2 fraction on flame propagation rate and biomass conversion. With the increase in O2 fraction, the propagation rates are found to be very high and reaching over 10 mm/s, resulting in incomplete pyrolysis and poor biomass conversion. The flame propagation rate is found to vary with oxygen volume fraction as XO22.5, and stable operation is achieved with O2 fraction below 30%.
Towards introducing H2O as a reactant for enhancing the hydrogen content in the syngas and also to reduce the propagation rates at higher ER, wet biomass is used. Stable operating conditions are achieved using wet biomass with moisture-to-biomass (H2O:Biomass) ratio between 0.6 to 1.1 (mass basis) and H2 yield up to 63 g/kg of dry biomass amounting to 33% volume fraction in the syngas. Identifying the limitation on the hydrogen yield and the criticality of achieving high quality gas; oxy-steam mixture is introduced as reactants with dry biomass as fuel. An electric boiler along with a superheater is used to generate superheated steam upto 700 K and pressure in the range of 0.4 MPa. Steam-to-biomass ratio (SBR) and ER is varied with towards generating hydrogen rich syngas with sustained continuous operation of oxy-steam gasification of dry biomass. The results are analysed with the variation of SBR for flame propagation rates, calorific value of product syngas, energy efficiency, H2 yield per kg of biomass and H2/CO ratio.
Hydrogen yield of 104 g per kg of dry casuarina wood is achieved amounting to 50.5% volume fraction in dry syngas through oxy-steam gasification process compared to air gasification hydrogen yield of about 40 g per kg of fuel and 20% volume fraction. First and second law analysis for energy and exergy efficiency evaluation has been performed on the experimental results and compared with air gasification. Individual components of the energy input and output are analysed and discussed. H2 yield is found to increase with SBR with the reduction in energy density of syngas and also energy efficiency. Highest energy efficiency of 80.3% has been achieved at SBR of 0.75 (on molar basis) with H2 yield of 66 g/kg of biomass and LHV of 8.9 MJ/Nm3; whereas H2 yield of 104 g/kg of biomass is achieved at SBR of 2.7 with the lower efficiency of 65.6% and LHV of 7.4 MJ/Nm3. The energy density of the syngas achieved in the present study is roughly double compared to the LHV of typical product gas with air gasification. Elemental mass balance technique has been employed to identify carbon boundary at an SBR of 1.5. Controlling parameters for arriving at the desired H2/CO ratio in the product syngas have been identified.
Optimum process parameters (ER and SBR) has been identified through experimental studies for sustained continuous oxy-steam gasification process, maximizing H2 yield, controlling the H2/CO ratio, high energy efficiency and high energy density in the product syngas. Increase in ER with SBR is required to compensate the reduction in O2 fraction in oxy-steam mixture and to maintain the desired bed temperature in the combustion zone. In the range of SBR of 0.75 to 2.7, ER requirement increases from 0.18 to 0.3. The sustained continuous operation is possible upto SBR of 1.5, till the carbon boundary is reached. Operating at high SBR is required for high H2 yield but sustained highest H2 yield is obtained as SBR of 1.5. H2/CO ratio in the syngas increases from 1.5 to 4 with the SBR and depending on the requirement of the downstream process (eg., FT synthesis), suitable SBR and ER combination is suggested. To obtain high energy density in syngas and high energy efficiency, operations at lower SBR is recommended.
The modeling study is the extension of the work carried by Dasappa (1999) by incorporating wood pyrolysis model into the single particle and volatile combustion for the packed bed of particles. The packed bed reactor model comprises of array of single particles stacked in a vertical bed that deals with the detailed reaction rates along with the porous char spheres and thermo-physical phenomenon governed by the mass, species and energy conservation equations.
Towards validating the pyrolysis and single particle conversion process, separate analysis and parametric study addressing the effects of thermo-physical parameters like particle size, density and thermal conductivity under varying conditions have been studied and compared with the available results from literature. It has been found that the devolatilisation time of particle (tc) follows closely the relationship with the particle diameter (d), thermal conductivity (k), density () and temperature (T) as:
The complete combustion of a single particle flaming pyrolysis and char combustion has been studied and validated with the experimental results. For the reactor modeling, energy, mass and species conservation equations in the axial flow direction formulate the governing equations coupled to the detailed single particle analysis. Gas phase reactions involving combustion of volatiles and water gas shift reaction are solved in the packed bed. The model results are compared with the experimental results from wood gasification system with respect to the propagation rate, conversion times, exit gas composition and other bed parameters like conversion, peak bed temperatures, etc.
The propagation rates compare well with experimental data over a range of oxygen concentration in the O2- N2 mixture, with a peak at 10 mm/s for 100 % O2. In the case of oxy-steam gasification of dry biomass, the results clearly suggest that the char conversion is an important component contributing to the bed movement and hence the overall effective propagation rate is an important parameter for co-current reactors. This is further analyzed using the carbon boundary points based on elemental balance technique.
The model predictions for the exit gas composition from the oxy-steam gasification matches well with the experimental results over a wide range of equivalence ratio and steam to biomass ratio. The output gas composition and propagation rates are found to be a direct consequence of input mass flux and O2 fraction in oxy-steam mixture.
The present study comprehensively addresses the oxy-steam gasification towards generating hydrogen rich syngas using experimental and model studies. The study also arrives at the parameters for design consideration towards operating an oxy-steam biomass gasification system. The following flow chart provides the overall aspects that are covered in the thesis chapter wise.
|
Page generated in 0.0531 seconds