Spelling suggestions: "subject:"astrochemistry."" "subject:"semiochemistry.""
61 |
Star-like macromers from ligninOliveira, Willer de 12 June 2010 (has links)
Star-like macromers were prepared from hydroxypropyl lignin by reaction with propylene oxide. The average number of arms per macromer was controlled by partial capping with diethylsulfate, and the average arm length by the degree of chain extension with propylene oxide.
Six methods of analysis were applied for characterizing of the star-like macromers: total hydroxyl (by titration), vapor pressure osmometry, hydriotic acid/gas chromatography, ultraviolet spectroscopy, proton-nuclear magnetic resonance spectroscopy and thermal analysis.
Number average molecular weights were measured by vapor pressure osmometry. Total hydroxyl content was determined after acetylation by potentiometric titration. Based on HPL molecular weight and hydroxyl content it was estimated that the average HPL molecule generates a star-like structure ("macromer”) with an average of 6 arms.
Hydriodic acid/gas chromatography proved to be the most appropriate method for the quantitative determination of the degree of capping. Based on this technique it was possible to classify star-like macromers with between two and six radiating arms per average molecule. The same method could also be applied for the determination of arm length. Two different propoxylation reaction conditions produced macromers with an average of 2.5 and 3.5 propylene oxide units per arm.
Ultraviolet spectroscopy was the simplest and most rapid method of analysis investigated. The decrease in copolymer absorptivity coefficient was found to be related to an increase in non-UV absorbing mass after capping and/or chain extension.
Results indicated that H-NMR spectroscopy is an adequate method of analysis for star-like macromers. Macromer arm length was calculated from the ratio of signals representing the methyl group of acetyl (i.e. hydroxyl) and propoxyl functionality. Two levels of propoxylation produced star-like macromers with 2.2 - 2.5 and 3.9 - 4.0 propylene oxide units per arm.
Thermal analysis by DMTA of lignin derivative-containing blends with ethylene-vinyl acetate copolymer indicated that the glass transition behavior of the star-like macromers follows the Gordon-Taylor relationship for copolymers. Although variable, the results revealed a consistent decrease in T<sub>g</sub> as a consequence of an increase of propylene oxide chain length. / Master of Science
|
62 |
The E/Z isomerization step in the biosynthesis of Z coniferyl alcohol in Fagus grandifolia Ehrh.Dubelsten, Paul January 1987 (has links)
In nature, it has long been assumed that p-hydroxycinnamyl alcohols occur exclusively in their trans (E) stereoisomeric form. However, in beech bark (Fagus grandifolia Ehrh.) only the corresponding cis (Z) monomers were found. Experiments with beech bark and 2-¹⁴C-labelled E ferulic acid, E coniferaldehyde, and E coniferyl alcohol revealed that these compounds were efficiently incorporated into both E and Z isomers of coniferyl alcohol. On the other hand, low incorporation of 2-¹⁴C-labelled Z ferulic acid indicated that this isomer was not a preferred substrate. Our results suggest that Z coniferyl alcohol is produced by E + Z isomerization of the corresponding E isomer. Experimental evidence excluded the possibility of this unusual isomerization occurring by either chemical or photochemical means; instead it is concluded that isomerization is enzymatically mediated by a novel isomerase. / M.S.
|
63 |
The hydrolysis of woodBrownley, Floyd Irving January 1942 (has links)
M.S.
|
64 |
Distribution of lignin-modifying enzymes among aquatic fungi and theirability to degrade lignocellulose substrates寶詠恩, Bucher, Vivienne Valerie Claire. January 2003 (has links)
published_or_final_version / Ecology and Biodiversity / Doctoral / Doctor of Philosophy
|
65 |
Effects of Harvesting on Nutrient Cycling, Red Spruce Radial Growth, and Dendrochemistry 30 Years after Harvesting in Northern Maine, USAReinmann, Andrew B. January 2006 (has links) (PDF)
No description available.
|
66 |
Lignin polysaccharide networks in biomass and corresponding processed materialsNjamela, Njamela 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Lignocellulosic material is composed of three major macromolecule components i.e., cellulose, hemicelluloses and lignin. These components are chemically associated and directly linked to each other through covalent bonding which is scientifically denoted as lignin-carbohydrate complexes (LCCs) and their interaction is fundamentally important as to understand wood formation and reactivity during chemical and biological processing e.g. pulping and enzymatic hydrolysis.
The association of lignin with polysaccharides (covalent linkages) has been surrounded by contradictions and controversy in several wood chemistry studies. These linkages exist in lignocellulosic materials from wood to herbaceous plants. In woody plants, they consist of ester and ether linkages through sugar hydroxyl to α-carbonyl of phenyl-propane unit on lignin. However, in herbaceous plants ferulic and p-coumaric acids are esterified to hemicelluloses and lignin respectively. In recent studies, the existence of the bonds has been shown by applying indirect analysis strategies which resulted to low yields and contaminations.
The general aim of the current study was to isolate and fractionate LCCs from raw lignocellulosic materials (E. grandis and sugarcane bagasse) and corresponding processed materials (chemical pulps and water-insoluble residues (WIS)) in order to determine the chemical structure of the residual lignin associated with polysaccharides and how they affected industrial processing. The objective of the study is to compile a document that when the development of pulping and bio-ethanol bio-refinery will greatly depends on the detailed wood chemistry on how the components interact with each before and after hemicelluloses pre-extraction prior to pulping and steam explosion pre-treatment prior to enzymatic hydrolysis.
The current study was focusing on understanding the effect LCCs isolated from two different industrial processing methods, i.e. pulping and enzymatic hydrolysis (EH). There were two lignocelluloses feedstocks used for pulping, i.e. Eucalyptus grandis and sugarcane bagasse whereas sugarcane bagasse was the only feedstock used for enzymatic hydrolysis. Hemicelluloses pre-extracted (mild alkali or dilute acid and autohydrolysis for sugarcane bagasse) pulps of Kraft or soda AQ from E. grandis and sugarcane bagasse were used to understand the effect of xylan pre-extraction prior to pulping on lignin-carbohydrate complexes has not been reported to the best knowledge of the primary author. Also prior to EH the material was subjected to two different treatment methods, i.e. steam explosion and ionic liquid fractionation in varying conditions. The study illustrated the types of extracted and fractionated LCCs from hemicelluloses pre-extracted pulps and WIS in comparison to the non-extracted pulps and reports from the literature. Lignin-carbohydrate complexes (LCCs) were isolated and fractionated by an inorganic method which yielded reasonable quantification quantities and no contamination and low yields for the hardwood compared to reports of using an enzymatic method. To the best knowledge of the authors, no work has been done on WIS material.
The lignocelluloses were subjected to ball milling which was followed by a sequence of inorganic solvents swelling and dissolution into 2 fractions i.e. glucan-lignin and xylan-lignin-glucan. Characterisation of the isolated LCCs was made using a variety of analytical tools such as FTIR-PCA, HPLC, GPC and GC-MS. LCCs were evident when FTIR and HPLC studies were conducted.
Residual lignin isolated from the lignocelluloses was assumed to be chemically bonded to carbohydrates and mostly to xylan. Approximately 60% and 30% of the lignin was linked to xylan while for the second and first fractions respectively. It is reported that lignin associated with xylan is more resistant and reduce the delignification process than when linked to glucan that is easily hydrolysable.
With the FTIR and GPC analyses of LCC fractions, it was evident that the ester bonds of LCCs were destroyed through pre-extraction and pre-treatment, where this resulted to more cellulose being more accessible to alkaline pulping and enzymatic hydrolysis respectively. The linkages were either partially broken down or completely destroyed leading to significant changes of chemical structures. The polydispersity of the LCCs assisted in determining the structure of lignin, either existing as monolignols on the surfaces of fibres or a as complex two or three-dimensional structure that is linked to carbohydrates as the Mw increased or decreased. In general, these findings may have an important implication for the overall efficiency on bio-refinery.
The molecular weights (Mw) of the extracted LCCs were measured by gel permeation chromatography. From the chromatograms, it was observed that the materials that were subjected to pre-processing prior to further processing, the Mw shifted to lower Mws regions. It was found that LCCs isolated from mild alkali pre-extracted pulps had high lignin syringyl to guaiacyl lignin contents than LCCs isolated from dilute acid pre-extracted pulps.
High syringyl/guaiacyl ratio (S/G ratio) was an indication of low lignin content as a result of processing which will result to high product yields after downstream processing. The 5
average S/G ratio for the pulps from E. grandis and sugarcane bagasse was ranging between 1.1 to 19.01 and 1.4 to 18.16 respectively, while for the WIS-material generated from ionic liquid fractionated and steam exploded materials ranged from 3.29 to 9.27 and 3.5 to 13.3 respectively. The S/G ratios of the LCCs extracted from E. grandis and sugarcane bagasse pulps ranged from 0.42 to 2.39 and 0.041 to 0.31 was respectively while for the LCCs extracted from water-insoluble-solids (WIS) material generated from steam exploded material was from 4.87 to 10.40. The determination of S/G ratio is recommended for the LCC extraction and characterisation study as an evaluation of residual lignin in processed materials such as pulps and WIS.
The obtained saccharifications were low, possibly due to the severity of the steam explosion pre-treatment and ionic liquid fractionation conditions which resulted on high accumulation of acetic acid and increased in cellulose crystallinity respectively.
From quantitative analysis of the LCCs perspective it could be concluded that free lignin was present in mild alkali pre-extracted pulps than for the dilute acid pre-extracted pulps. / AFRIKAANSE OPSOMMING: Cellulose materiaal is saamgestel uit drie groot makromolekule komponente naamlik, sellulose, hemisellulose en lignien. Hierdie komponente is chemies verwante en direk met mekaar verbind deur kovalente binding wat wetenskaplik aangedui as lignien-koolhidraat komplekse (LCCs) en hul interaksie is fundamenteel belangrik as hout vorming en reaktiwiteit tydens chemiese en biologiese verwerking bv om te verstaan verpulping en ensiematiese hidrolise.
Die vereniging van lignien met polisakkariede (kovalente verbindings) is omring deur teenstrydighede en omstredenheid in verskeie hout chemie studies. Hierdie skakeling bestaan in cellulose materiaal uit hout te kruidagtige plante. In houtagtige plante, hulle bestaan uit ester en eter bindings deur suiker hidroksiel te α-karboniel van feniel-propaan eenheid op lignien. Maar in kruidagtige plante ferulic en p-coumaric sure veresterd te hemisellulose en lignien onderskeidelik. In onlangse studies, het die bestaan van die bande is getoon deur die toepassing van indirekte analise strategieë wat gelei tot lae opbrengste en kontaminasie.
Die algemene doel van die huidige studie was om te isoleer en fraksioneer LCCs van rou cellulose materiaal (E. grandis en suikerriet bagasse) en die ooreenstemmende verwerkte materiaal (chemiese pulp en water-oplosbare residue (WIS)) ten einde die chemiese struktuur van die te bepaal oorblywende lignien wat verband hou met polisakkariede en hoe hulle geaffekteerde industriële verwerking. Die doel van die studie is 'n dokument op te stel dat wanneer die ontwikkeling van verpulping en bio-etanol bio-raffinadery sal grootliks afhang van die gedetailleerde hout chemie oor hoe om die komponente met mekaar voor en na hemisellulose pre-onttrekking voor verpulping en stoom ontploffing pre-behandeling voor ensiematiese hidrolise.
Die huidige studie was die fokus op die begrip van die effek LCCs geïsoleerd van twee verskillende industriële verwerking, maw verpulping en ensiematiese hidrolise (EH). Daar was twee lignocelluloses voerstowwe gebruik vir verpulping, dws Eucalyptus grandis en suikerriet bagasse terwyl suikerriet bagasse was die enigste grondstof gebruik vir ensiematiese hidrolise. Hemisellulose pre-onttrek (ligte alkali of verdunde suur en autohydrolysis vir suikerriet bagasse) pulp van Kraft of soda AQ van E. grandis en suikerriet bagasse is gebruik om die effek van Xylan pre-onttrekking te voor verstaan verpulping op lignien-koolhidraat komplekse het nie aan die berig is beste kennis van die primêre outeur. Ook voor EH die materiaal is onderworpe aan twee verskillende behandeling metodes, naamlik stoom ontploffing en ioniese vloeistof fraksionering in wisselende toestande. Die studie geïllustreer die tipes onttrek en gefractioneerd LCCs van hemisellulose pre-onttrek pulp en WIS in vergelyking met die nie-onttrek pulp en verslae van die literatuur. Lignien-koolhidraat komplekse (LCCs) is geïsoleer en gefraksioneer deur 'n anorganiese metode wat redelike kwantifisering hoeveelhede en geen besoedeling en lae opbrengste opgelewer vir die hardehout vergelyking met verslae van die gebruik van 'n ensiematiese metode. Na die beste kennis van die skrywers, het geen werk op WIS materiaal gedoen.
Die lignocelluloses is onderworpe aan die bal maal wat gevolg is deur 'n reeks van anorganiese oplosmiddels swelling en ontbinding in 2 breuke dws glucan-lignien en Xylan-lignien-glucan. Karakterisering van die geïsoleerde LCCs is gemaak met behulp van 'n verskeidenheid van analitiese gereedskap soos FTIR-PCA, HPLC, GPC en GC-MS. LCCs was duidelik wanneer FTIR en HPLC studies is uitgevoer.
Residuele lignien geïsoleerd van die lignocelluloses is aanvaar moet word chemies gebind aan koolhidrate en meestal te xylan. Ongeveer 60% en 30% van die lignien is gekoppel aan xylan terwyl dit vir die tweede en eerste breuke onderskeidelik. Dit is gerapporteer dat lignien wat verband hou met Xylan is meer bestand en die delignification proses as wanneer gekoppel aan glucane wat maklik hidroliseerbare verminder.
Met die FTIR en GPC ontledings van LCC breuke, was dit duidelik dat die ester bande van LCCs is deur pre-ontginning en pre-behandeling, waar dit gelei tot meer sellulose om meer toeganklik te alkaliese verpulping en ensiematiese hidrolise onderskeidelik vernietig. Die skakeling is óf gedeeltelik afgebreek of heeltemal vernietig lei tot beduidende veranderinge van chemiese strukture. Die polydispersity van die LCCs bygestaan in die bepaling van die struktuur van lignien, hetsy bestaande as monolignols op die oppervlak van die vesel of 'n as komplekse twee of drie-dimensionele struktuur wat gekoppel is aan koolhidrate as die Mw vermeerder of verminder. In die algemeen, kan hierdie bevindinge het 'n belangrike implikasie vir die algehele doeltreffendheid op bio-raffinadery.
Die molekulêre gewigte (Mw) die onttrek LCCs gemeet deur gelpermeasie- chromatografie. Van die chromatograms, was dit opgemerk dat die materiaal wat blootgestel is aan die pre-verwerking voor verdere verwerking, die Mw verskuif MWS streke te verlaag. Daar is gevind dat LCCs geïsoleerd van ligte alkali pre-onttrek pulp het hoë lignien syringyl lignien inhoud as LCCs geïsoleerd van verdunde suur vooraf onttrek pulp te guaiacyl.
Hoë syringyl / guaiacyl verhouding (S/G-verhouding) was 'n aanduiding van 'n lae lignien inhoud as 'n resultaat van verwerking wat sal lei tot 'n hoë produk opbrengste ná stroomaf verwerking. Die gemiddelde S/G-verhouding vir die pulp van E. grandis en suikerriet bagasse was wat wissel tussen 1,1-19,01 en 1,4-18,16 onderskeidelik, terwyl dit vir die WIS-materiaal gegenereer uit ioniese vloeistof gefraksioneer en stoom ontplof materiaal het gewissel 3,29-9,27 en 3.5 13,3 onderskeidelik. Die S/G verhoudings van die LCCs onttrek uit E. grandis en suikerriet bagasse pulp gewissel 0,42-2,39 en ,041-,31 was onderskeidelik terwyl dit vir die LCCs onttrek uit water-oplosbare-vastestowwe (WIS) materiaal gegenereer uit stoom ontplof materiaal was van 4,87-10,40. Die bepaling van S/G-verhouding word aanbeveel vir die LCC ontginning en karakterisering studie as 'n evaluering van die oorblywende lignien in verwerkte materiaal soos pulp en WIS.
Die verkry saccharifications was laag, moontlik as gevolg van die erns van die stoom ontploffing pre-behandeling en ioniese vloeistof fraksionering voorwaardes wat gelei op 'n hoë opeenhoping van asynsuur en vermeerder in sellulose kristalliniteit.
|
67 |
Incorporation of lignin copolymers into polyurethane materialsKelley, Stephen S. January 1987 (has links)
Hydroxypropyl lignins (HPLs) from several sources were reacted with propylene oxide to produce chain-extended ) hydroxypropyl lignin (CEHPL) copolymers with molar substitutions (MS) between 1 and 7 propylene oxide units. Isolated copolymers were characterized with respect to their chemical composition, molecular weight and thermal properties. These techniques confirmed the presence of a copolymer with between 20 and 67% lignin. Glass transition temperatures (Tgs) of the CEPHLs followed the behavior predicted by the Gordon-Taylor equation. Properties of the CEHPLs were independent of the original lignin source.
The CEHPL copolymers were incorporated into lignin polyurethane networks (LPUs). The LPUs contained 17 to 43% lignin and showed a single Tg. Both the Tg and the Youngs modulus (MOE) of the LPUs were strongly correlated to the lignin content and type of diisocyanate used to prepare the network. Swelling studies indicated that the LPUs prepared from CEHPLs with a high MS (5-7) were not highly crosslinked networks. The LPU properties also appeared to be independent of the lignin source.
In another set of experiments a HPL was separated into five fractions (F-HPLs) with molecular weights (MWs) between 1.5 and 10x10³ daltons. The Tg of the F-HPLs was correlated to molecular weight by the Fox-Flory equation. The fractionated HPLs were incorporated into polyurethane networks. The Tgs of these networks were related to the MW of the F-HPL. Swelling studies indicated that low molecular weight monofunctional fragments limited network formation.
The LPUs were also used as one component in LPU/polymethyl methacrylate (PMA) interpenetrating polymer networks (IPNs). These IPNs varied in their LPU/PMMA composition and the presence of crosslinking. Dynamic mechanical and thermal analysis showed two phases in all of the IPNs. Mechanical properties were dependent on the IPN composition and phase crosslinking. For IPNs with a crosslinked LPU phase, the MOE values indicated the presence of dual phase continuity.
A second series of IPNs was prepared to investigate the effects of lignin content on IPN properties. Phase separation appeared to be related to the lignin content. Mechanical properties were related to lignin content and not the phase behavior. / Ph. D.
|
68 |
The impact of the chemical and physical properties of Pinus patula on pulp and pulp strength properties.January 2005 (has links)
Due to the opportunity for afforestation in South Africa being severely limited, extensive research is being carried out on obtaining more wood per given area, improving the quality and value of the wood and on gaining a better understanding of how wood properties influence the characteristics of the pulp it produces. The last mentioned is the main focus of this study. If the variations in pulp, due to variations in wood properties, are better understood, then the existing fibre resource could be more efficiently managed and utilised to maximise its value. The main objective of this study was to determine how variation in physical and chemical properties, from the existing P.patula resource drives variation in pulp strength properties. It is well known that differences in tree age and site index lead to major sources of variation of various wood properties. These two easily measured variables were used in this study to capture a significant amount of variation in the wood of the aforementioned genus that enters a mill. Samples were obtained from two extremes in site quality, as measured by site index, (viz. good and poor sites) and three age ranges (viz. 9-10 years, 13-14 years and 20-21 years) from the KwaZulu-Natal Midlands. Wood chips from each of the six sites were pulped for various lengths of time, using the Kraft pulping method and under the same pulping conditions. A wide range of anatomical and chemical properties of wood and pulp were measured to characterise these samples as extensively as possible. All pulp samples were beaten in a PFI mill, at four different levels. The freeness values of the beaten samples were measured. The physical properties measured on handsheets made from the pulp included sheet density, burst index, tear index, tensile index, tensile energy absorbed, stretch and zero-span tensile strength. Regression models were developed to quantify the impact of the measured variables on each of the strength properties. Principal component analysis was performed on the wood characteristics measured and indicated that tree age is a more critical source of variation in wood properties than site index. The predictions of whole tree wood properties from the properties measured at breast height were excellent. Pulping studies showed that pulp yield, at kappa 20-30, increased with tree age. Wood cellulose proved to be a very good predictor of pulp yield. Xylose and mannose appeared to be most resistant to degradation during pulping. The low yield pulps were easier to refine than those with high yield. This has important implications when considering high yield pulping processes. With regard to pulp strength, the younger material could not achieve the high tear strengths obtained by the older material. However, the tear strengths achieved by these younger sites were comparable with, if not higher than, that obtained by hardwood species. The implications of this is that younger P. patula trees could be used for grades of paper where very high tear strength is not essential, but tensile is (e.g. tissue paper) and that older material can be better used for the purpose of providing the high tear strength needed by certain paper grades (e.g. linerboard and sackkraft). The maximum tensile strength achieved by the younger material was higher than that of the older material. When compared at constant freeness or sheet density, longer cooking times had a deleterious effect on strength properties. Strong predictions of pulp strength from basic wood properties were obtained when strength results were compared at constant freeness and sheet density. Because of the great influence of fibre morphology and chemistry on refining rates and on the resultant strength properties, the results of the study suggest that fibres of greatly different chemical and anatomical characteristics should not be refined together, if beating energy and pulp strength are to be optimised. However, further work is required to evaluate if the separation of fibre resources, to improve pulp quality, would be economically viable. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2005.
|
69 |
Effect of digestion on wood structureBixler, A. L. M. (Andrew Loy Moore) 01 January 1937 (has links)
No description available.
|
70 |
Interspecific and Size-dependent Variation in Carbon Concentration and Wood Chemical Traits of Tropical TreesMartin, Adam 17 December 2012 (has links)
Tropical forests play a major role in global carbon (C) dynamics and maintain some of the highest biological complexity on Earth; however, little is known about how variation in wood chemical traits contributes to tropical forest structure and function. This research examines inter- and intraspecific patterns in wood chemical traits in order to understand 1) the role wood chemical traits play in tropical forest C dynamics, and 2) the adaptive significance of wood chemical traits in tropical trees. I found wood C concentration varies widely among co-occurring tropical tree species, with average C concentration (47.4 ± 0.33% w/w (S.E.)) being significantly lower than values assumed in prominent forest C accounting protocols. Failing to account for this variation leads to overestimates of ~3.3 – 5.3% in tropical forest C accounting, an error that compounds significantly at larger spatial scales. I also show that oven drying samples prior to elemental analysis underestimates wood C concentration by 2.5 ± 0.17%, due to the loss of the “volatile C fraction”. Counter to expectations, I found wood C concentration is not
ii
phylogenetically conserved nor correlated to species demography or life history traits. Wood chemical traits showed consistent size-dependent patterns: wood C (in 16 of 24 species) and lignin (in 15 of 16 species) was higher in saplings vs. conspecific canopy trees. These patterns, complimented by phylogenetic analyses, suggest saplings require wood chemical traits that confer greater pathogen defense. When analyzed across a continuous size spectrum, I found wood C concentration (and leaf structural traits) increases linearly, while wood starch concentration (and leaf traits associated with C gain) shows “hump-shaped” patterns with peak values closely preceding reproductive onset; the latter result suggests C may limit growth in larger trees. Overall, my dissertation provides one of the first comprehensive examinations of wood chemical trait variation in tropical trees. In doing so it provides novel, timely, and critical insights into how wood chemical traits contribute to tropical forest structure and function.
|
Page generated in 0.0309 seconds