• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 565
  • 1
  • Tagged with
  • 566
  • 566
  • 566
  • 566
  • 548
  • 548
  • 439
  • 359
  • 316
  • 316
  • 316
  • 315
  • 312
  • 295
  • 286
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Geochemistry of deep-sea hydrothermal vent fluids from the Mid-Cayman Rise, Caribbean Sea

McDermott, Jill Marie January 2015 (has links)
Thesis: Ph. D., Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2015. / Cataloged from PDF version of thesis. / Includes bibliographical references. / This thesis examines the controls on organic, inorganic, and volatile species distributions in hydrothermal fluids venting at Von Damm and Piccard, two recently discovered vent fields at the ultra slow spreading Mid-Cayman Rise, Earth's deepest mid-ocean ridge. A wide variety of possible temperatures and substrates for fluid/rock reaction exist at ultraslow spreading ridges. The flux of chemicals delivered to the ocean by circulating vent fluids exerts a major control on mass transfer into and out of the oceanic crust and supports chemosynthetic ecosystems. In Chapter 2, abiotic organic synthesis is shown to occur via two distinct mechanisms in the serpentinizing Von Damm system. Longstanding questions concerning the spatial, temporal, and mechanistic nature of carbon transformations in deep-sea hot springs are addressed. In contrast with the current paradigm, CH4 is not actively forming during circulation of H2-rich vent fluids, but instead is derived from fluid inclusions in the host rocks. Chapters 3 and 4 present in-depth studies of the chemical and isotopic compositions of aqueous species in vent fluids at Von Damm and Piccard to elucidate the role of reaction temperature, pressure, substrate composition, and water/rock mass ratios during the chemical evolution of hydrothermal fluids at oceanic spreading centers. At Von Damm, sequential reaction of gabbroic and peridotite substrates at intermediate temperatures can explain generation of the observed fluids. Geochemical modeling shows that talc-quartz assemblage is expected to precipitate during fluid mixing with seawater at the seafloor. At Piccard, extremely high temperature subsurface water/rock reaction results in high temperature fluids that are richer in dissolved H2 than any previously observed fluids worldwide. At both locations, high-H2 conditions promote the abiotic reduction of [Epsilon]CO2 to formate species, which may fuel a subsurface biosphere. In Chapter 5, multiple sulfur isotopes were measured on metal sulfide deposits, So, and fluid H2S to constrain sulfur sources and the isotopic systematics of precipitation in a wide variety of seafloor hydrothermal vents. Areas studied include the eastern Manus Basin and Lau Basin back-arc spreading centers, the unsedimented basalt-hosted Southern East Pacific Rise, and the sediment-hosted Guaymas Basin mid-ocean ridge spreading centers. Limited isotope fractionation between fluid H2S and precipitating chalcopyrite implies that sulfur isotopes in a chimney lining may record past hydrothermal activity. / by Jill Marie McDermott. / Ph. D.
232

Late Quaternary climate variability and terrestrial carbon cycling in tropical South America

Fornace, Kyrstin L January 2016 (has links)
Thesis: Ph. D., Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Characterizing global and regional climate variability and climate-carbon cycle interactions in the past provides critical context for evaluating present and future climate trends. In this thesis, I use stable isotope and radiocarbon analysis of vascular plant biomarkers in lacustrine and marine sediment cores to explore late Quaternary climate variability and connections between past climate change and terrestrial carbon cycling in tropical South America. I investigate temporal and spatial trends in South American Summer Monsoon precipitation by reconstructing hydrologic variability over the past 50,000 years at two sites: the Lake Titicaca drainage basin in the Central Andes and the Pantanal wetlands in the interior lowlands. Diverging hydrologic trends at these two sites during the last glacial period suggest altered monsoon circulation patterns under glacial conditions, while changes in summer insolation appear to be an important control of precipitation at both sites during the Holocene. I next assess the relationship between climate change and the age structure of terrestrial biospheric carbon exported from two tropical catchments over the past 20,000 years. Radiocarbon dating of leaf waxes in Cariaco Basin and Lake Titicaca sediment records indicates that waxes preserved in sediments are likely composed of a fresh component transported to sediments within decades of production by vegetation and an old component derived from aged soil organic matter with an average age on the order of millennia at time of deposition. Results from both sites show that past hydrologic variability had a significant impact on the mobilization and export of different pools of terrestrial biospheric carbon. In particular, results from Cariaco Basin suggest that wetter conditions in the past resulted in increased export of fresh biospheric carbon to the ocean, representing a potentially important climate feedback mechanism on geologic timescales. / by Kyrstin L. Fornace. / Ph. D.
233

Thermal and mechanical development of the East African Rift System

Ebinger, Cynthia Joan January 1988 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), June 1988. / "May 1988." / Includes bibliographical references (p. 163-169). / The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, Landsat, and geophysical studies in the Western rift reveal a series of asymmetric basins bounded by approximately 100 kmlong segments of the border fault system. These basins are linked by oblique-slip and strike-slip faults cross-cutting the rift valley. Faults bounding the Kenya and Western rift valleys delineate two north-south-trending, 40-75 km wide zones of crustal extension, and little or no crustal thinning has occurred beneath the uplifted flanks or the central plateau. In the Western rift, volcanism in Late Miocene time began prior to or concurrent with basinal subsidence, followed by rift flank uplift. Individual extensional basins developed diachronously, and basinal propagation may give rise to the along-axis segmentation of the rift valley. The coherence between gravity and topography data indicates that the mechanical lithosphere beneath the two rift valleys has been weakened relative to the central plateau and adjacent cratonic regions. Gravity and topography data at wavelengths corresponding to the overcompensated East African plateau can be explained by density variations within the upper mantle that are dynamically maintained. / by Cynthia J. Ebinger. / Ph.D.
234

The marine geochemistry of iron and iron isotopes

Bergquist, Bridget A., 1973- January 2004 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and, the Woods Hole Oceanographic Institution), 2004. / Includes bibliographical references. / This thesis addressed questions about the Fe cycle by measuring detailed profiles and transects of Fe species in the ocean and also by exploring the use of a new tracer of Fe, Fe isotopic fractionation. In the subtropical and tropical Atlantic Ocean, transects and profiles are presented for dissolved Fe ([less than]0.4 m), soluble Fe ([less than]0.02 gm), and colloidal Fe (0.02 to 0.4 Im). Surface dissolved Fe distributions reflect atmospheric deposition trends with colloidal Fe following dust deposition more strongly than the soluble fraction of Fe. Observed surface maxima and shallow minima in dissolved Fe were always due to variations in the colloidal Fe fraction. Deep-water dissolved and colloidal Fe concentrations vary with water mass source, age, and transport path. Elevated dissolved Fe concentrations ([greather than]1 nmol/kg) were associated with an oxygen minimum zone in the tropical Atlantic at 100N, 45 degrees W. Fractionation of iron isotopes could be an effective tool to investigate the geochemistry of iron. Trace metal clean plankton tows, river samples, aerosol leachates, and porewater samples were measured for their iron isotopic composition using a GV Instruments IsoProbe Multi-collector ICPMS. The Fe isotopic composition of plankton tow samples varied by over 4%o (in 56Fe/54Fe). North Pacific plankton tow samples had isotopically lighter Fe isotopic compositions than samples from the Atlantic. The overall isotopic range observed in the Amazon River system was 1.5%o, with variability observed for different types of tributaries. / (cont.) The main channel river dissolved Fe samples and suspended loads were isotopically similar ( -0.2 to -0.45%o relative to igneous rocks). The isotopically heaviest sample collected was dissolved Fe from an organic rich tributary, the Negro River (+0.16%o). In contrast, the suspended load from the Negro River was isotopically light (-1%o). The isotopically lightest sample from the Amazon region was shelf porewater (-1.4%o). In river water-seawater mixing experiments, the Fe isotopic signal of dissolved Fe of river water was modified by flocculation of isotopically heavy Fe. The observed range in the Fe isotopic composition of the natural samples including biological and aqueous samples demonstrates that significant and useful fractionation is associated with Fe biogeochemistry in the environment ... / by Bridget A. Bergquist. / Ph.D.
235

Axial structure of fast spreading mid-ocean ridges : implications for overlapping spreading centers

Blackman, Donna K January 1986 (has links)
Thesis (M.S.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1986. / Includes bibliographical references (leaves 88-91). / by Donna Kay Blackman. / M.S.
236

Examining the effects of mid ocean ridge topography on 3D marine magnetometric resistivity model responses

Lassner, Lisa A January 2004 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2004. / Includes bibliographical references (leaves 68-69). / Methods which measure seafloor resistivity are uniquely suited to studying hydrothermal circulation in the crust. The magnetometric resistivity (MMR) technique is a galvanic method which uses a bipole current source with a magnetometer receiver. The resistivity of the subsurface can be estimated from the magnetic field read in MMR. In order to analyze and invert MMR data taken near Mid Ocean Ridges, it is important to understand the effects of ridge topography on MMR models. To analyze these effects a 3D MMR forward modeling program MMR3Df̲wd is used to model Mid Ocean Ridges with varying slopes, resistivities, and source/receiver geometries. The modeled magnetic fields are compared with models with a flat seafloor to determine the impact of the ridge topography. Results show that for some of the ridges modeled, the effects of the topography were significant, suggesting that in some instances it is important to include ridge topography in forward models to obtain accurate results from data inversion. / by Lisa A. Lassner. / S.M.
237

Investigation of the effect of a circular patch of vegetation on turbulence generation and sediment deposition using four case studies

Ortiz, Alejandra C January 2012 (has links)
Thesis (S.M.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 77-79). / This study describes the spatial distribution of sediment deposition in the wake of a circular patch of model vegetation and the effect of the patch on turbulence and mean flow. Two difference types pf vegetation were used along with two different stem densities totaling four different case studies. The spatial location of enhanced deposition correlated with the steady wake zone, which has length, L1. The steady wake zone only occurred downstream of the rigid emergent patches of vegetation and was not seen downstream of the flexible submerged patches of vegetation. The enhanced deposition occurred when both turbulence and mean velocity was below the upstream, initial values. The enhanced deposition occurred when the mean velocity was less than or equal to half of the initial velocity. For the four cases studied, theses parameters of low velocity and low turbulence were primarily met within the steady wake region immediately downstram of the two rigid emergent patches of vegetation. In all four cases, large coherent structures are created in the flow due to the patch. Lateral vortices are formed downstream of the patch in a von-Karman vortex street that meets at the center of the flow a distance, Lw, downstream of the patch. For the flexible submerged cases, streamlines reattach to the bed of the flume a distance, Lv, downstream of the patch. In addition, for the flexible submerged cases, a secondary circulation is generated with flow moving laterally away from the patch at the surface and toward the centerline of the patch at the bed. / by Alejandra C. Ortiz. / S.M.
238

A magmatic trigger for the Paleocene-Eocene thermal maximum?

Dubin, Andrea Rose January 2015 (has links)
Thesis: Ph. D., Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2015. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Fifty-six million years ago Earth experienced rapid global warming (~6°C) that was caused by the release of large amounts of carbon into the ocean-atmosphere system. This Paleocene-Eocene Thermal Maximum (PETM) is often cited as an analogue of anthropogenic climate change. Many trigger mechanisms for the carbon release at the PETM have been proposed. Common to all scenarios is rapid release of isotopically light carbon (<¹³C/¹²C values) from methane hydrates, terrestrial or marine organic matter, as indicated by a pronounced excursion to light carbon isotope values across the PETM. I test the hypothesis that the PETM warming and isotope excursion were caused by the intrusion of a magmatic sill complex into organic-rich sediments in the North Atlantic. The intrusion of magma into sedimentary rocks will cause heating and metamorphic reactions in a thermal aureole around the intrusion. If these sediments are rich in organic matter, large volumes of isotopically light carbon are rapidly released. I examine geochemical evidence from lead, osmium, and organic carbon to place constraints on the extent the carbon isotope excursion during the PETM may have been caused by contact metamorphism of organic-rich sediments. Potential terrestrial and submarine analogs are examined to determine the behavior of these elements during thermal alteration. Furthermore, geochemical evidence from sediment cores at the PETM provides additional information about what might have caused the carbon isotope excursion. I find that lead is not a suitable proxy for carbon mobilization to the overlying seawater during contact metamorphism. Osmium, however, is mobilized together with carbon. Making reasonable assumptions for the ¹⁸⁷Os/¹⁸⁸Os of the sediments from the North Atlantic Magmatic Province (NAMP), constrained by the ¹⁸⁷Re/¹⁸⁸Os of organic-rich sediments and the depositional age of the sediment, the entire marine osmium isotope anomaly at the PETM could be explained without the need to invoke enhanced continental weathering. Based on estimates of the extent of mobilization of organic carbon relative to osmium, approximately 47% to 60% of the carbon released at the PETM may have been derived from thermal alteration of organic-rich sediments in the NAMP. / by Andrea Rose Dubin. / Ph. D.
239

Molecular determination of marine iron ligands by mass spectrometry

Boiteau, Rene M January 2016 (has links)
Thesis: Ph. D., Joint Program in Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016. / Page 231 blank. Cataloged from PDF version of thesis. / Includes bibliographical references. / Marine microbes produce a wide variety of metal binding organic ligands that regulate the solubility and availability of biologically important metals such as iron, copper, cobalt, and zinc. In marine environments where the availability of iron limits microbial growth and carbon fixation rates, the ability to access organically bound iron confers a competitive advantage. Thus, the compounds that microbes produced to acquire iron play an important role in biogeochemical carbon and metal cycling. However, the source, abundance, and identity of these compounds are poorly understood. To investigate these processes, sensitive methodologies were developed to gain a compound-specific window into marine iron speciation by combining trace metal clean sample collection and chromatography with inductively coupled plasma mass spectrometry (LCICPMS) and electrospray ionization mass spectrometry (LC-ESIMS). Coupled with isotope pattern assisted search algorithms, these tools provide a means to quantify and isolate specific iron binding ligands from seawater and marine cultures, identify them based on their mass and fragmentation spectra, and investigate their metal binding kinetics. Using these techniques, we investigated the distribution and diversity of marine iron binding ligands. In cultures, LC-ICPMS-ESIMS was used to identify new members of siderophore classes produced by marine cyanobacteria and heterotrophic bacteria, including synechobactins and marinobactins. Applications to natural seawater samples from the Pacific Ocean revealed a wide diversity of both known and novel metal compounds that are linked to specific nutrient regimes. Ferrioxamines B, E, and G were identified in productive coastal waters near California and Peru, in oligotrophic waters of the North and South Pacific Gyre, and in association with zooplankton grazers. Siderophore concentrations were up to five-fold higher in iron-deficient offshore waters (9pM) and were dominated by amphibactins, amphiphilic siderophores that partition into cell membranes. Furthermore, synechobactins were detected within nepheloid layers along the continental shelf. These siderophores reflect adaptations that impact dissolved iron bioavailability and thus have important consequences for marine ecosystem community structures and primary productivity. The ability to map and characterize these compounds has opened new opportunities to better understand mechanisms that link metals with the microbes that use them. / by Rene M. Boiteau. / Ph. D.
240

Geochemical characerization of endmember mantle components

Workman, Rhea K January 2005 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references. / This thesis uses trace elements and radiogenic isotope tracers to define elemental abundances in reservoirs of the Earth's mantle, including EM2 (the Enriched Mantle 2), as seen in the Samoan hotspot track, and DMM (the depleted upper mantle), which is sampled at mid-ocean ridges. Together these components comprise up to [approx.] 50% of the total mantle mass. Much of the mantle's chemical heterogeneities are suspected to originate by either the removal of mass from the mantle (in the case of DMM) or the addition of mass to the mantle through subduction zones (in the case of EM2). We show that DMM represents mantle that 1) has been previously depleted by 2-3% melt removal, 2) mass-balances well with the continental crust, 3) has only 15% of the radiogenic heat production in primitive upper mantle and 4) can generate present-day ocean crust by 6% aggregated fractional melting. EM2 is classically interpreted as mantle material enriched in trace elements through the ancient, subduction-zone recycling of terrigenous sediments; here we show this model is unlikely and provide two other working hypotheses. / (cont.) The first is recycling of melt- impregnated oceanic lithosphere; the second is recycling of a mantle wedge impregnated with melt from a subducting oceanic plate. / by Rhea K. Workman. / Ph.D.

Page generated in 0.1311 seconds