• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 565
  • 1
  • Tagged with
  • 566
  • 566
  • 566
  • 566
  • 548
  • 548
  • 439
  • 359
  • 316
  • 316
  • 316
  • 315
  • 312
  • 295
  • 286
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Performance analysis for lateral-line-inspired sensor arrays

Fernandez, Vicente I January 2011 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 223-232). / The lateral line is a critical component of the fish sensory system, found to affect numerous aspects of behavior including maneuvering in complex fluid environments, schooling, prey tracking, and environment mapping. This sensory organ has no analog in modem ocean vehicles, despite its utility and ubiquity in nature, and could fill the gap left by sonar and vision systems in turbid cluttered environments. Yet, while the biological sensory system suggests the broad possibilities associated with such a sensor array, nearly nothing is known of the input processing and what information is available via the real lateral line. This thesis demonstrates and characterizes the ability of lateral-line-inspired linear pressure sensor arrays to perform two sensory tasks of relevance to biological and man-made underwater navigation systems, namely shape identification and vortex tracking. The ability of pressure sensor arrays to emulate the "touch at a distance" feature of the lateral line, corresponding to the latter's capability of identifying the shape of objects remotely, is examined with respect to moving cylinders of different cross sections. Using the pressure distribution on a small linear array, the position and size of a cylinder is tracked at various distances. The classification of cylinder shape is considered separately, using a large database of trials to identify two classification approaches: One based on differences in the mean flow, and one trained on a subset which utilizes information from the wake. The results indicate that it is in general possible to extract specific shape information from measurements on a linear pressure sensor array, and characterize the classes of shapes which are not distinguishable via this method. Identifying the vortices in a flow makes it possible to predict and optimize the performance of flapping foils, and to identify imminent stall in a control surface. Vortices in wakes also provide information about the object that generated the wake at distances much larger than the near-field pressure perturbations. Experimental studies in tracking a vortex pair and an individual vortex interacting with a flat plate demonstrate the ability to track vortices with a linear pressure sensor array from both small streamlined bodies and large flat bodies. Based on a theoretical analysis, the relationship between the necessary array parameters and the range of vortices of interest is established. / by Vicente I. Fernandez. / Ph.D.
212

Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating

Gospodinova, Kalina Doneva January 2012 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 49-50). / The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic Carbon System (REDICS) consists of two subsystems - one for sample introduction, acidification, and carbon dioxide extraction, and one for carbon dioxide quantification and storing. The first subsystem efficiently extracts the dissolved inorganic carbon from the water sample in the form of carbon dioxide by utilizing a gas-permeable polymer membrane contractor. The second subsystem traps, quantifies and stores the extracted gas using cryogenics. The extracted carbon dioxide is further processed for stable and radiocarbon isotope analysis at the National Ocean Sciences Accelerator Mass Spectrometer Facility at the Woods Hole Oceanographic Institution. The REDICS system was tested using seawater standards collected at 470m and 4000m depth in the Atlantic Ocean and analyzing the extracted CO₂. The results were compared to the results for the same standards processed on the current NOSAMS water stripping line. The results demonstrate that the system successfully extracts more than 99% of the dissolved inorganic carbon in less than 20 minutes. Stable isotope and radiocarbon isotope analyses demonstrated system precision of 0.02%c and 3.5% respectively. / by Kalina Doneva Gospodinova. / S.M.
213

Measuring surface ocean wave height and directional spectra using an Acoustic Doppler Current Profiler from an autonomous underwater vehicle

Haven, Scott January 2012 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 117-119). / The Acoustic Doppler Current Profiler (ADCP) is a proven technology which is capable of measuring surface wave height and directional information, however it is generally limited to rigid, bottom mounted applications which limit its capabilities for measuring deep water waves. By employing an upward looking ADCP on a moving platform, such as an autonomous underwater vehicle or submerged float, we show that it is possible to remove the wave induced motion of the platform and accurately measure surface ocean wave information. The platform selected for testing was a REMUS-100 vehicle equipped with an upward and downward looking ADCP and high accuracy Kearfott inertial navigation unit. Additionally, a Microstrain 3DM-GX3-25 Attitude Heading Reference System was tested as a low cost alternative to the Kearfott system. An experiment consisting of multiple REMUS deployments was conducted near the Martha's Vineyard Coastal Observatory (MVCO). The wave induced motion was measured by various inertial and acoustic sensors and removed from the ADCP data record. The surface wave height and mean directional estimates were compared against a Datawell MKIII directional Waverider buoy and bottom mounted 1200 kHz upward looking ADCP at the MVCO. Results demonstrate that the non-directional spectrum of wave height and the mean wave direction as a function of frequency can be accurately measured from an underway autonomous underwater vehicle in coastal depth waters using an ADCP. / by Scott Haven. / S.M.
214

Broadband and statistical characterization of echoes from random scatterers : application to acoustic scattering by marine organisms

Lee, Wu-Jung January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 213-229). / The interpretation of echoes collected by active remote-sensing systems, such as sonar and radar, is often ambiguous due to the complexities in the scattering processes involving the scatterers, the environment, and the sensing system. This thesis addresses this challenge using a combination of laboratory and field experiments, theoretical modeling, and numerical simulations in the context of acoustic scattering by marine organisms. The unifying themes of the thesis are 1) quantitative characterization of the spectral, temporal, and statistical features derived from echoes collected using both broadband and narrowband signals, and 2) the interpretation of echoes by establishing explicit links between echo features and the sources of scattering through physics principles. This physics-based approach is distinct from the subjective descriptions and empirical methods employed in most conventional fisheries acoustic studies. The first part focuses on understanding the dominant backscattering mechanisms of live squid as a function of orientation. The study provides the first broadband backscattering laboratory data set from live squid at all angles of orientation, and conclusively confirms the fluid-like, weakly-scattering material properties of squid through a series of detailed comparisons between data and predictions given by models derived based on the distorted-wave Born approximation. In the second part, an exact analytical narrowband model and a numerical broadband model are developed based on physics principles to describe the probability density function of the amplitudes of echo envelopes (echo pdf) of arbitrary aggregations of scatterers. The narrowband echo pdf model significantly outperforms the conventional mixture models in analyzing simulated mixed assemblages. When applied to analyze fish echoes collected in the ocean, the numerical density of fish estimated using the broadband echo pdf model is comparable to the density estimated using echo integration methods. These results demonstrate the power of the physics-based approach and give a first-order assessment of the performance of echo statistics methods in echo interpretation. The new data, models, and approaches provided here are important for advancing the field of active acoustic observation of the ocean. / by Wu-Jung Lee. / Ph.D.
215

Quantifying channelized submarine depositional systems from bed to basin scale

Lyons, William J., 1965- January 2004 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and, the Woods Hole Oceanographic Institution), 2004. / Includes bibliographical references (p. 239-252). / The challenges of directly observing active turbidity currents necessitates the consideration of preserved deposits for deciphering the behavior of these systems. In this thesis, I take advantage 3-D subsurface seismic data and outcrop exposures to study turbidites at scales ranging from bed to basin. At the basin scale, I develop a method to estimate the time-frame over which sedimentation and subsidence come into equilibrium. Using seismic data from the Fisk Basin, Gulf of Mexico, I find that, during periods of broadly distributed, sheet-like deposition, equilibrium time is on the order of 4.6 x 105 years. In contrast, during periods of confined channel development, that time drops to 2.0 x 105 years. Identifying these equilibrium times is critical because, at times below equilibrium, autogenic and allogenic stratigraphic signals cannot be distinguished. At the scale of turbidite beds, detailed grainsize analyses of sediment samples from the Capistrano Formation, San Clemente, California reveal the potential for misinterpretation that arises when deposits are studied without consideration for the dynamics of sedimentation. Previously interpreted as the result of anomalous sandy turbidites, using simple bed shear calculation and Froude scaling, I show that these coarse sediments are consistent with classical muddy, low-density turbidity cur- rents. Finally, at the scale of amalgamated turbidite beds, I use outcrop mapping and aerial photography of the Zerrissene Turbidite System, Namibia to provide a measure of lateral and vertical continuity of a deepwater turbidite system. / (cont.) Previous studies have been hampered by limited exposure while the extensive continuous exposure of the Zerissenne show that correlation lengths of these systems can exceed 1.5 km. / by William J. Lyons, III. / Ph.D.
216

Performance bounds on matched-field methods for source localization and estimation of ocean environmental parameters

Xu, Wen, 1967- January 2001 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering and the Woods Hole Oceanographic Institution), 2001. / Includes bibliographical references (leaves 207-215). / Matched-field methods concern estimation of source location and/or ocean environmental parameters by exploiting full wave modeling of acoustic waveguide propagation. Typical estimation performance demonstrates two fundamental limitations. first, sidelobe ambiguities dominate the estimation at low signal-to-noise ratio (SNR), leading to a threshold performance behavior. Second, most matched-field algorithms show a strong sensitivity to environmental/system mismatch, introducing some biased estimates at high SNR. In this thesis, a quantitative approach for ambiguity analysis is developed so that different mainlobe and sidelobe error contributions can be compared at different SNR levels. Two large-error performance bounds, the Weiss-Weinstein bound (WWB) and Ziv-Zakai bound (ZZB), are derived for the attainable accuracy of matched-field methods. To include mismatch effects, a modified version of the ZZB is proposed. Performance analyses are implemented for source localization under a typical shallow water environment chosen from the Shallow Water Evaluation Cell Experiments (SWellEX). The performance predictions describe the simulations of the maximum likelihood estimator (MLE) well, including the mean square error in all SNR regions as well as the bias at high SNR. The threshold SNR and bias predictions are also verified by the SWellEX experimental data processing. These developments provide tools to better understand some fundamental behaviors in matched-field performance and provide benchmarks to which various ad hoc algorithms can be compared. / by Wen Xu. / Ph.D.
217

A distributed approach to underwater acoustic communications

Bohner, Christopher George, 1972- January 2003 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and, the Woods Hole Oceanographic Institution), 2003. / Includes bibliographical references (p. 118-120). / by Christopher George Bohner. / S.M.
218

Controller design for underwater vehicle systems with communication constraints

Reed, Brooks Louis-Kiguchi January 2015 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2015. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 181-201). / Real-time cooperation between autonomous vehicles can enable time-critical missions such as tracking and pursuit of a dynamic target or environmental feature, but relies on wireless communications. Underwater, communication over distances beyond about one hundred meters is almost exclusively accomplished through acoustics, which bring challenges such as propagation delays, low data rates, packet loss, and scheduling constraints due to interference and limited bandwidth. These limitations make underwater pursuit missions preeminent applications of networked control. Motivated by such applications, this thesis presents contributions towards multi-vehicle feedback control in the presence of severe communication constraints. The first major area of work considers the formulation and solution of new underwater multi-vehicle tracking and pursuit problems using closed-loop control. We begin with a centralized robust optimization approach for multicast routing and power control which is suitable for integration with vehicle control. Next, we describe field experiments in range-based target pursuit at high tracking bandwidths in a challenging shallow-water environment. Finally, we present a methodology for pursuit of dynamic ocean features such as fronts, which we validate using hindcast ocean model data. The primary innovation is a projection algorithm which carries out linearization of ocean model forecast dynamics and uncertainty directly in vehicle coordinates via a forward model technique. The resulting coupled linear stochastic system is suitable for networked control. The second area of work presents a unified formalism for multi-vehicle control and estimation with measurement, control, and acknowledgment packets all subject to scheduling, delays and packet loss. The modular framework we develop is built around a jump linear system description incorporating receding horizon optimization and buffering at actuators. Integration of these elements enables synthesis of a novel technique for estimation using delayed and lossy control acknowledgments-a desirable and practical capability of fielded systems that has not been considered to date. Simulations and field experiments demonstrate the effectiveness of our approach. / by Brooks Louis-Kiguchi Reed. / Ph.D.
219

Interactions between mantle plumes and mid-ocean ridges : constraints from geophysics, geochemistry, and geodynamical modeling

Georgen, Jennifer E January 2001 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2001. / "September 2001." Vita. Page 223 blank. / Includes bibliographical references. / This thesis studies interactions between mid-ocean ridges and mantle plumes using geophysics, geochemistry, and geodynamical modeling. Chapter 1 investigates the effects of the Marion and Bouvet hotspots on the ultra-slow spreading, highly-segmented Southwest Indian Ridge (SWIR). Gravity data indicate that both Marion and Bouvet impart high-amplitude mantle Bouguer anomaly lows to the ridge axis, and suggest that long-offset transforms may diminish along-axis plume flow. Building upon this observation, Chapter 2 presents a series of 3D numerical models designed to quantify the sensitivity of along-axis plume-driven mantle flow to transform offset length, spreading rate, and mantle viscosity structure. The calculations illustrate that long-offset transforms in ultra-slow spreading environments may significantly curtail plume dispersion. Chapter 3 investigates helium isotope systematics along the western SWIR as well as near a global array of hotspots. The first part of this study reports uniformly low 3He/4He ratios of 6.3-7.3 R/Ra along the SWIR from 9⁰-24⁰E, compared to values of 8 +/- 1 Ra for normal mid-ocean ridge basalt. The favored explanation for these low values is addition of (U+Th) into the mantle source by crustal and/or lithospheric recycling. Although high He/4He values have been observed along the SWIR near Bouvet Island to the west, there is no evidence for elevated 3He/4He ratios along this section of the SWIR. The second part of Chapter 3 investigates the relationship between 3He/4He ratios and geophysical indicators of plume robustness for nine hotspots. / (cont.) A close correlation between a plume's flux and maximum 3He/4He ratio suggests a link between plume upwelling strength and origination in the deep, relatively undegassed mantle. Chapter 4 studies 3D mantle flow and temperature patterns beneath oceanic ridge-ridge-ridge triple junctions (TJs). In non-hotspot-affected TJs with geometry similar to the Rodrigues TJ, temperature and upwelling velocity along the slowest-spreading of the three ridges are predicted to increase within a few hundred kilometers of the TJ, to approach those of the fastest-spreading ridge. Along the slowest-spreading branch in hotspot-affected TJs such as the Azores, a strong component of along-axis flow directed away from the TJ is predicted to advect a hotspot thermal anomaly away from its deep-seated source. / by Jennifer E. Georgen. / Ph.D.
220

The influence of ridge geometry at the ultraslow-spreading Southwest Indian Ridge (9⁰-25⁰E) : basalt composition sensitivity to variations in source and process

Standish, Jared Jeffrey January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references. / Between 90-25° E on the ultraslow-spreading Southwest Indian Ridge lie two sharply contrasting supersegments. One 630 km long supersegment erupts N-MORB that is progressively enriched in incompatible element concentrations from east to west. The second 400 km long supersegment contains three separate volcanic centers erupting E-MORB and connected by long amagmatic accretionary segments, where mantle is emplaced directly to the seafloor with only scattered N-MORB and E-MORB erupted. Rather than a major break in mantle composition at the discontinuity between the supersegments, this sharp contrast in geometry, physiography, and chemistry reflects "source" versus "process" dominated generation of basalt. Robust along-axis correlation of ridge characteristics (i.e. morphology, upwelling rate, lithospheric thickness), basalt chemistry, and crustal thickness (estimated from gravity) provides a unique opportunity to compare the influence of spreading geometry and rate on MORB generation. What had not been well established until now is the importance of melting processes rather than source at spreading rates < 20 mm/yr. / (cont.) Along the orthogonally spreading supersegment (14 mm/yr) moderate degrees of partial melting effectively sample the bulk mantle source, while on the obliquely spreading supersegment (7-14 mm/yr) suppression of mantle melting to low degrees means that the bulk source is not uniformly sampled, and thus "process" rather than "source" dominates melt chemistry. / by Jared Jeffrey Standish. / Ph.D.

Page generated in 0.1016 seconds