Spelling suggestions: "subject:"goods role oceanographic institutution"" "subject:"goods role oceanographic constitutution""
421 |
Evolution of the Irminger Current anticyclones in the Labrador Sea from hydrographic dataRykova, Tatiana January 2006 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 139-143). / The continuous supply of heat and fresh water from the boundaries to the interior of the Labrador Sea plays an important role for the dynamics of the region and in particular, for the Labrador Sea Water formation. Thus, it is necessary to understand the factors governing the exchange of properties between the boundary and interior. A significant fraction of heat and fresh water, needed to balance the annual heat loss and to contribute to the seasonal freshening of the Labrador Sea, is thought to be provided by coherent long-lived anticyclonic eddies shed by the Irminger Current. The population, some properties, rates and direction of propagation of these anomalies are known but the evolution and the mechanism of their decay are still far from obvious. In this work I investigated their water mass properties and evolution under the strong wintertime forcing using hydrographic data from 1990-2004 and a 1-dimensional mixed layer model. There were 50 eddies found in the hydrographic data record, 48 of which were identified as anticyclones. Vertical structure of the eddies was investigated, leading to the categorization of all the anticyclones into three classes: 12 - with a fresh surface layer and no mixed layer, 18 - without a fresh layer and at least one mixed layer, and 18 with ambiguous vertical structure. Four eddies of the second group appeared to have cores extending to as deep as 1500 m vertically and an isopycnal displacement of 400-600 m. A number of eddies without a fresh water cap contained Labrador Sea Water from the previous year at mid-depths. / (cont.) Vertical structure of the eddies was investigated, leading to the categorization of all the anticyclones into three classes: 12 - with a fresh surface layer and no mixed layer, 18 - without a fresh layer and at least one mixed layer, and 18 with ambiguous vertical structure. Four eddies of the second group appeared to have cores extending to as deep as 1500 m vertically and an isopycnal displacement of 400-600 m. A number of eddies without a fresh water cap contained Labrador Sea Water from the previous year at mid-depths. / by Tatiana Rykova. / S.M.
|
422 |
Winter mixed-layer development in the central Irminger Sea : the effect of strong, intermittent wind eventsVåge, Kjetil January 2006 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 81-86). / The impact of the Greenland tip jet on the wintertime mixed-layer of the southwest Irminger Sea is investigated using in-situ moored profiler data and a variety of atmospheric data sets. The mixed-layer was observed to reach 400 m in the spring of 2003, and 300 m in the spring of 2004. Both of these winters were mild and characterized by a low North Atlantic Oscillation (NAO) index. All of the storms that were advected through the region were tracked, and the tip jet events that occurred throughout the two winters were identified. Composite images of the tip jets elucidated the conditions during which tip jets were likely to take place, which led to an objective method of determining tip jet occurrences by taking into account the large-scale pressure gradients. Output from a trajectory model indicates that the air parcels entering a tip jet accelerate and descend as they are deflected around southern Greenland. A heat flux timeseries for the mooring site was constructed that includes the enhancing influence of the tip jet events. This was used to drive a one-dimensional mixed-layer model, which was able to reproduce the observed mixed-layer deepening in both winters. All of the highest heat flux events took place during tip jets, and removal of the tip jets from the heat flux timeseries demonstrated their importance in driving convection east of Greenland. / (cont.) The deeper mixed-layer of the first winter was in large part due to a higher number of robust tip jet events, which in turn was caused by a greater number of storms passing northeast of southern Greenland. This interannual change in storm tracks was attributable to a difference in upper level steering currents. Application of the mixed-layer model to the winter of 1994-1995, during a period characterized by a high NAO index, resulted in convection reaching 1600 m. This prediction is consistent with concurrent hydrographic data, supporting the notion that deep convection can occur in the Irminger Sea during strong winters. / by Kjetil Våge. / S.M.
|
423 |
Emulating the fast-start swimming performance of the Chain Pickerel (Esox niger) using a mechanical fish designWatts, Matthew Nicholas January 2006 (has links)
Thesis (S.M. in Oceanographic Engineering)--Joint Program in Ocean Engineering/Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 74-75). / Mean maximum start-up accelerations and velocities achieved by the fast-start specialist, northern pike, are reported at 120 ms-2 and 4 ms-1, respectively (Harper and Blake, 1990). In this thesis, a simple mechanical system was created to closely mimic the startle response that produces these extreme acceleration events. The system consisted of a thin metal beam covered by a urethane rubber fish body. The mechanical fish was held in curvature by a restraining line and released by a pneumatic cutting mechanism. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish. The fish motion was recorded and the kinematics analyzed while using a number of different tail shapes and materials. Performance of the mechanical fish was determined by maximum acceleration, peak and averaged maximum velocity, and hydrodynamic efficiency. Maximum start-up acceleration was calculated at 48 ms-2. Peak and averaged maximum velocity was calculated at 0.96 ms-1 and 0.8 ms-1, respectively. The hydrodynamic efficiency of the fish, calculated by the transfer of energy, was 11%. Flow visualization of the mechanical fast-start wake was also analyzed. The visualization uncovered two specific vortex-shedding patterns; a single and a double-vortex pattern are described. / by Matthew Nicholas Watts. / S.M.
|
424 |
The seasonal and interannual variability of the West Greenland current system in the Labrador SeaRykova, Tatiana A January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010. / "June 2010." Cataloged from PDF version of thesis. / Includes bibliographical references (p. 151-159). / The Labrador Sea, as one of a few places of deep water formation, plays an important role in the Meridional Overturning Circulation. While the interior of the Labrador Sea, where the deepest convection takes place, is known to experience variability on time scales ranging from days to decades, little is known about the variability of the other components of the Labrador Sea circulation - the boundary current system and the eddies that connect it with the interior. Using various types of in situ data combined with the surface flux and satellite altimetry data products, I studied the variability of both the boundary current system and the eddies on different time scales as well as their influence on the post-convective re-stratification of the Labrador Sea interior. The analysis presented in the thesis supports the result of the previous theoretical studies that argue that lateral fluxes, driven by the boundary current/interior gradients, play an important role in the post-convective restratification of the Labrador Sea. I found that both components of the boundary current, the surface West Greenland Current and the subsurface Irminger Current, have a strong seasonal cycle. In the spring both the West Greenland and Irminger Currents are colder and fresher than in the fall. However, the West Greenland Current is faster and thicker in the spring while the Irminger Current is the fastest and thickest in the fall. My analysis suggests that the observed seasonal changes in the velocity are primarily due to the baroclinic component of the current while the barotropic component remains nearly unchanged. The Subpolar Gyre, and the Labrador Sea in particular, have experienced a decline in the circulation accompanied by the warming of the water column over the last decades. I found that a similar trend is seen in the West Greenland Current system which slowed down from 1992 to 2004, primarily due to a decrease in the barotropic flow. At the same time, the subsurface Irminger Current has become warmer, saltier, and lighter, something that is also reflected in the properties of the eddies. Two years exhibited pronounced anomalies: in 1997 and 2003 the velocity, temperature and salinity of the Irminger Current abruptly increase with respect to the overall trend. Finally, I discuss the impacts of the boundary current changes on the lateral fluxes that are responsible for the restratification of the Labrador Sea and the properties of the interior. / by Tatiana Rykova. / Ph.D.
|
425 |
Diapycnal advection by double diffusion and turbulence in the oceanSt. Laurent, Louis C January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (leaves 129-139). / Observations of diapycnal mixing rates are examined and related to diapycnal advection for both double-diffusive and turbulent regimes. The role of double-diffusive mixing at the site of the North Atlantic Tracer Release Experiment is considered. The strength of salt-finger mixing is analyzed in terms of the stability parameters for shear and double-diffusive convection, and a nondimensional ratio of the thermal and energy dissipation rates. While the model for turbulence describes most dissipation occurring in high shear, dissipation in low shear is better described by the salt-finger model, and a method for estimating the salt-finger enhancement of the diapycnal haline diffusivity over the thermal diffusivity is proposed. Best agreement between tracer-inferred mixing rates and microstructure based estimates is achieved when the salt-finger enhancement of haline flux is taken into account. The role of turbulence occurring above rough bathymetry in the abyssal Brazil Basin is also considered. The mixing levels along sloping bathymetry exceed the levels observed on ridge crests and canyon floors. Additionally, mixing levels modulate in phase with the spring-neap tidal cycle. A model of the dissipation rate is derived and used to specify the turbulent mixing rate and constrain the diapycnal advection in an inverse model for the steady circulation. The inverse model solution reveals the presence of a secondary circulation with zonal character. These results suggest that mixing in abyssal canyons plays an important role in the mass budget of Antarctic Bottom Water. / by Louis Christopher St. Laurent. / Ph.D.
|
426 |
On the warm bias along the South-West African Coast in coupled models : an oceanic perspectiveWang, Jinbo, Ph. D. Massachusetts Institute of Technology January 2008 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. 64-67). / Coupled ocean/atmosphere simulations exhibit systematic warm biases over the South West African (SWA) coastal region. Recent investigations indicate that coastal ocean dynamics may play an important role in determining the SST patterns, but none of them provide a detailed analysis. In this study, I analyze simulations produced both by coupled models and by idealized models. Then results are interpreted on the basis of a theoretical framework. Finally the conclusion is reached that the insufficient resolution of the ocean component in the coupled model is responsible for the warm biases over the SWA coastal region. The coarse resolution used in the ocean model has an artificially stretched coastal side-wall boundary layer, which induces a smaller upwelling velocity in the boundary layer. The vertical heat transport decreases even when the volume transport is unchanged because of its nonlinear relationship with the magnitude of the upwelling velocity. Based on the scaling of the idealized model simulations, a simplified calculation shows that the vertical heat transport is inversely proportional to the zonal resolution over the coastal region. Therefore, increasing the horizontal resolution can considerably improve the coastal SST simulation, and better resolve the coastal dynamics. / by Jinbo Wang. / S.M.
|
427 |
N₂ fixation by subsurface populations of Trichodesmium : an important source of new nitrogen to the North Atlantic Ocean / Nitrogen gas fixation by subsurface populations of Trichodesmium : an important source of new nitrogen to the North Atlantic OceanHeithoff, Abigail January 2011 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2011. / Cataloged from PDF version of thesis. "February 2011." / Includes bibliographical references (leaves 44-48). / Trichodesmium, a genus of diazotrophic cyanobacteria, is an important contributor to the marine nitrogen (N) and carbon (C) cycles. The extent to which Trichodesmium dinitrogen (N2) fixation contributes to the marine N cycle has been modeled based on abundance data and rate estimates from surface populations. However, recent data show that Trichodesmium populations have a broad vertical distribution. The presence of previously unaccounted for subsurface populations suggests that past estimates of the contribution of new N by Trichodesmium to the North Atlantic may be artificially low. Herein, culture and field studies were combined to examine trends in N2 fixation in discrete surface and subsurface Trichodesmium populations in the western North Atlantic. Surface populations were dominated by the raft colony morphology of Trichodesmium and surface N2 fixation rates ranged from (33 to 156 μmol h-1 mol C-1). Subsurface populations were dominated by the puff colony morphology. Subsurface N2 fixation was typically detectable, but consistently lower than surface population rates (9 to 88 μmol h-1 mol C-1). In an analysis of the entire field dataset, N2 fixation rates varied non-linearly as a function of in situ irradiance. This trend in N2 fixation versus in situ irradiance is consistent with field and culture observations in the literature (Bell et al., 2005; Capone et al., 2005), however other models that predict N2 fixation based on light predict higher subsurface N2 fixation than what was detected in this study. In culture, N2 fixation in Trichodesmium was proportional to light level over the range of irradiances tested (10 to 70 μmol quanta m-2 s-1) and over long and short time scales, suggesting subtle changes in the light field could depress subsurface N2 fixation. Since the subsurface samples were dominated by the puff colony morphology, it is unclear if the subsurface N2 fixation rates are the result of the in / by Abigail Heithoff. / S.M.
|
428 |
Seafloor ripples created by waves from hurricane Ivan on the west Florida shelfBowers, Colleen Marie January 2006 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (leaves 94-96). / Recent studies have shown that the presence of sand ripples on the seabed improves sonar detection of buried mines at sub-critical angles. Sidescan sonar data of ripples off on the west Florida shelf were collected as part of ONR's Ripples Departmental Research Initiative (DRI) September 26-29th and November 7-9th, 2004. Hurricane Ivan, the strongest storm of the 2004 hurricane season, passed over the experiment site a week before the first data collection. This study focuses on the ripples created by Ivan. Average relict ripple wavelengths left after the storm were found to increase with water depth (50 cm, 62 cm, and 83 cm in 20, 30, and 50 meter water depths) despite the fact that orbital diameter decreases with water depth. Ripple prediction requires information about surface gravity waves and sediment grain size. The most reliable offshore wave field available was created with Wavewatch III by Naval Postgraduate School scientists. These waves were inputted into Delft3D WAVE, incorporating the nearshore wave model SWAN to predict waves at the locations where ripples were measured. Orbital motions at the seabed and grain size were inputted into a time-dependent ripple model with varying dissipation parameters to estimate sand ripples created by Hurricane Ivan. Ripple wavelength was found to be more strongly dependent on grain size than wave dissipation. / by Colleen Marie Bowers. / S.M.
|
429 |
Geoacoustic inversion by mode amplitude perturbationPoole, Travis L January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references (p. 124-126). / This thesis introduces an algorithm for inverting for the geoacoustic properties of the seafloor in shallow water. The input data required by the algorithm are estimates of the amplitudes of the normal modes excited by a low-frequency pure-tone sound source, and estimates of the water column sound speed profiles at the source and receiver positions. The algorithm makes use of perturbation results, and computes the small correction to an estimated background profile that is necessary to reproduce the measured mode amplitudes. Range-dependent waveguide properties can be inverted for so long as they vary slowly enough in range that the adiabatic approximation is valid. The thesis also presents an estimator which can be used to obtain the input data for the inversion algorithm from pressure measurements made on a vertical line array (VLA). The estimator is an Extended Kalman Filter (EKF), which treats the mode amplitudes and eigenvalues as state variables. Numerous synthetic and real-data examples of both the inversion algorithm and the EKF estimator are provided. The inversion algorithm is similar to eigenvalue perturbation methods, and the thesis also presents a combination mode amplitude/eigenvalue inversion algorithm, which combines the advantages of the two techniques. / by Travis L. Poole. / Ph.D.
|
430 |
Physically constrained maximum likelihood method for snapshot deficient adaptive array processingKraay, Andrea L. (Andrea Lorraine), 1976- January 2003 (has links)
Thesis (Elec.E. and S.M. in Electrical Engineering)--Joint Program in Applied Ocean Physics and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2003. / "February 2003." / Includes bibliographical references (leaves 139-141). / by Andrea L. Kraay. / Elec.E.and S.M.in Electrical Engineering
|
Page generated in 0.1321 seconds