• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser Diodes to Single-Mode Fibers Coupling Employing a Hyperbolic-Shaped Graded-Index Fiber Endface

Sul, Shin-Chia 06 July 2007 (has links)
In this thesis, a novel fiber structure with advantages of high coupling efficiency, long working distance and better alignment tolerance has been presented. In this structure, the front-end of the singe-mode fiber (SMF) was spliced a graded-index fiber (GIF) with 50£gm core diameter. A hyperbolic-shaped lens was fabricated in the front-end of GIF. This novel fiber structure can increase the coupling efficiency of SMF effectively by using the wavefront-transfer characteristic of hyperbolic-shaped lens and the focusing characteristic of GIF. According to the simulation results, the optimized length of the GIF was 1160£gm. This novel fiber structure can reach to the coupling efficiency of 77% and working distance of 16£gm when the output power of laser diode was operated at 10mW and the radius curvature of lensed fiber was 12.74£gm. The lateral and longitudinal alignment tolerances of this fiber were 0.8£gm and 1.3£gm, respectively. In comparison with the conventional SMF lens, this novel fiber structure has longer working distance and better fiber alignment tolerance. Therefore, this structure can increase the package yield and reduce the fabrication cost for the application of laser module package.
2

Application of Laser Scanning as a Pre-machining metrology technique in Jet-ECM

Yahyavi Zanjani, Matin, Zeidler, Henning, Martin, André, Schubert, Andreas 23 August 2017 (has links) (PDF)
In Electrochemical Machining (ECM), where the material removal takes place based on the anodic dissolution of the workpiece material, the working distance is one of the most important parameters. Especially in Jet Electrochemical Machining (Jet-ECM), where a micro nozzle is moved over the initial surface of the workpiece in order to apply an electrolytic free jet to produce the desired shapes, the distance between the nozzle and the workpiece becomes even more important. On the one hand a small working distance is aspired to achieve high current densities resulting in a high efficiency of the process. On the other hand the working distance needs to be large enough to avoid damages on the micro nozzle caused by electrical discharges or mechanical contact. Hence, the adjustment of the working gap is essential to realize a precise, effective and secure Jet-ECM process. The control of the gap size is done based on the data gathered before machining by surface measurement. Until now, the initial surface has been detected by electrostatic probing through moving the nozzle stepwise to the work piece surface and detect the voltage drop between the nozzle and the work piece. With this strategy, only a limited number of points can be detected within adequate time. Hence, in most cases only three points of the initial surface are detected in order to adjust the working distance according to the planar inclination of the workpiece. The coordinates of the three detected points are used to calculate the normal vector of the initial surface. In recent studies, another strategy was analysed, which is realized by dividing the surface into smaller areas and respectively calculating the normal vector of each area in order to obtain more accurate data of the initial surface. A further strategy is to use probing along the machining path of the tool and to gather the coordinates of a number of points along the path. The above mentioned methods usually do not ensure the precise control of the gap size especially for the surfaces with complex geometry with locally confined convex and concave shapes and are highly affected by the size of the probe. In this study, the application of a laser scanner is investigated for the measurement of the workpiece surface before machining to gather the required data for the adjustment of the working distance during Jet-EC machining of complicated surfaces.
3

Application of Laser Scanning as a Pre-machining metrology technique in Jet-ECM

Yahyavi Zanjani, Matin, Zeidler, Henning, Martin, André, Schubert, Andreas 23 August 2017 (has links)
In Electrochemical Machining (ECM), where the material removal takes place based on the anodic dissolution of the workpiece material, the working distance is one of the most important parameters. Especially in Jet Electrochemical Machining (Jet-ECM), where a micro nozzle is moved over the initial surface of the workpiece in order to apply an electrolytic free jet to produce the desired shapes, the distance between the nozzle and the workpiece becomes even more important. On the one hand a small working distance is aspired to achieve high current densities resulting in a high efficiency of the process. On the other hand the working distance needs to be large enough to avoid damages on the micro nozzle caused by electrical discharges or mechanical contact. Hence, the adjustment of the working gap is essential to realize a precise, effective and secure Jet-ECM process. The control of the gap size is done based on the data gathered before machining by surface measurement. Until now, the initial surface has been detected by electrostatic probing through moving the nozzle stepwise to the work piece surface and detect the voltage drop between the nozzle and the work piece. With this strategy, only a limited number of points can be detected within adequate time. Hence, in most cases only three points of the initial surface are detected in order to adjust the working distance according to the planar inclination of the workpiece. The coordinates of the three detected points are used to calculate the normal vector of the initial surface. In recent studies, another strategy was analysed, which is realized by dividing the surface into smaller areas and respectively calculating the normal vector of each area in order to obtain more accurate data of the initial surface. A further strategy is to use probing along the machining path of the tool and to gather the coordinates of a number of points along the path. The above mentioned methods usually do not ensure the precise control of the gap size especially for the surfaces with complex geometry with locally confined convex and concave shapes and are highly affected by the size of the probe. In this study, the application of a laser scanner is investigated for the measurement of the workpiece surface before machining to gather the required data for the adjustment of the working distance during Jet-EC machining of complicated surfaces.
4

Saccadic eye movement measurements in the normal eye: Investigating the clinical value of a non-invasive eye movement monitoring apparatus.

Kavasakali, Maria January 2005 (has links)
Clinicians are becoming increasingly aware of the effect of various pathologieso n the characteristicso f saccadice ye movements.A s such, an efficient and non-invasivem eano f measuringe ye-movementisn a clinical environmenti s of interest to many. The aim of this thesis is to investigate the clinical application of a non-invasive eye movement recording technique as a part of a clinical examination. Eye movements were measured using an IRIS 6500 infrared limbal eye tracker, which we customized for the direct recording of oblique eye movements as well as horizontal and vertical. Firstly, the eye-tracker itself was assessed. Visually normal observers made saccadic eye movements to a 10' stimulus in eight directions of gaze. Primary (ANOVA) and secondary analyses (mean error less than 5%) resulted in acceptance that averaging four measurements would give a representative measurement of saccadic latency, peak velocity, amplitude and duration. Test-retest results indicated that this technique gives statistically (± 1.96*STDEVDifference) repeatable responses. Severalf actors that could potentially influence clinically basedm easureso f eye-movementsw ere examined. These included, the effect of ageing, viewing distances, dioptric blur and cataract. The results showed that saccadic latency and durationa re significantly (p< 0.05) longer in older (60-89 years)o bserversc ompared to younger (20-39 years). Peak velocity and amplitude were not significantly affectedb y the age of the observer.A ll saccadicp arameters( SP) were significantly affected by direction (Chapter 5). The compact nature of this eye movement methodology is obtainable since there is no significant effect on viewing distance (300 cm vs. 49 cm) (Chapter 6). There is also no significant effect of dioptric blur (up to +LOODS) on any of the four SP. In contrast, a higher level of defocus (+3.O ODS)h as a larger probability of interfering with the measurementso f peak velocity and duration (Chapter 7). Saccadice ye-movementsw ere also recorded whilst normally sighted subjects wore cataract simulation goggles. The results suggested that the presence of dense cataract introduces significant increases in saccadic latencies and durations. No effect was found on the peak velocities and amplitudes.T he effect of amblyopiao n SP was also investigatedin order to examine if this methodologyi s able to detectn ormal from abnormalr esponses(i . e. increased saccadicla tencies).T his set of data (Chapter9 ) showedt hat using IRIS 6500, longer than normal latencies may be recorded from the amblyopic eye but no consistent effect was found for the other SP (peak velocity, amplitude, duration). overall, the results of this thesis demonstrateth at the IRIS 6500 eye-tracker has many desirable elements (it is non-invasive; comfortable for the observers and gives repeatable and precise results in an acceptable time) that would potentially make it a useful clinical tool as a part of a routine examination.
5

Saccadic eye movement measurements in the normal eye : investigating the clinical value of a non-invasive eye movement monitoring apparatus

Kavasakali, Maria January 2005 (has links)
Clinicians are becoming increasingly aware of the effect of various pathologies on the characteristics of saccadic eye movements. As such, an efficient and non-invasive means of measuring eye-movement in a clinical environment is of interest to many. The aim of this thesis is to investigate the clinical application of a non-invasive eye movement recording technique as a part of a clinical examination. Eye movements were measured using an IRIS 6500 infrared limbal eye tracker, which we customized for the direct recording of oblique eye movements as well as horizontal and vertical. Firstly, the eye-tracker itself was assessed. Visually normal observers made saccadic eye movements to a 10' stimulus in eight directions of gaze. Primary (ANOVA) and secondary analyses (mean error less than 5%) resulted in acceptance that averaging four measurements would give a representative measurement of saccadic latency, peak velocity, amplitude and duration. Test-retest results indicated that this technique gives statistically (± 1.96*STDEVDifference) repeatable responses. Several factors that could potentially influence clinically based measures of eye-movements were examined. These included, the effect of ageing, viewing distances, dioptric blur and cataract. The results showed that saccadic latency and duration are significantly (p < 0.05) longer in older (60-89 years) observers compared to younger (20-39 years). Peak velocity and amplitude were not significantly affected by the age of the observer. All saccadic parameters (SP) were significantly affected by direction (Chapter 5). The compact nature of this eye movement methodology is obtainable since there is no significant effect on viewing distance (300 cm vs. 49 cm) (Chapter 6). There is also no significant effect of dioptric blur (up to +LOODS) on any of the four SP. In contrast, a higher level of defocus (+3.O ODS) has a larger probability of interfering with the measurements of peak velocity and duration (Chapter 7). Saccadic eye-movements were also recorded whilst normally sighted subjects wore cataract simulation goggles. The results suggested that the presence of dense cataract introduces significant increases in saccadic latencies and durations. No effect was found on the peak velocities and amplitudes. The effect of amblyopia on SP was also investigated in order to examine if this methodology is able to detect normal from abnormal responses (i.e. increased saccadic latencies). This set of data (Chapter9 ) showed that using IRIS 6500, longer than normal latencies may be recorded from the amblyopic eye but no consistent effect was found for the other SP (peak velocity, amplitude, duration). Overall, the results of this thesis demonstrate that the IRIS 6500 eye-tracker has many desirable elements (it is non-invasive; comfortable for the observers and gives repeatable and precise results in an acceptable time) that would potentially make it a useful clinical tool as a part of a routine examination.

Page generated in 0.1237 seconds