• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Workload Driven Designs for Cost-Effective Non-Volatile Memory Hierarchies

Timothy A Pritchett (9179468) 28 July 2020 (has links)
Compared to traditional hard-disk drives (HDDs), non-volatile (NV) memory technologies offer significant performance advantages on one hand, but also incur significant cost and asymmetric write-performance on the other. A common strategy to manage such cost- and performance-differentials is to use hierarchies such that a small, but intensely accessed, working set is staged in the NV storage (selective caching). However, when this working set includes write-heavy data, the low write-lifetime of NV storage necessitates significant over-provisioning to maintain required lifespans (e.g., storage lifespan must match or exceed 3 year server lifespan). One may think that employing DRAM-based write-buffers can filter writes that trickle through to the NV storage and thus alleviate the write-pressure felt at the NV storage. Unfortunately, selective caches, when used with common recency-based or frequency-based replacement, have access patterns that require large write buffers (e.g., 100MB+ relative to a 12GB cache) to filter writes adequately. Further, these large DRAM write-buffers also require backup-power to ensure the durability of disk writes. More sophisticated replacement policies that combine recency and frequency can reduce the size of the DRAM buffer (while preserving write-filtering), but are so computationally-expensive that they can limit the I/O rate, especially for simple controllers (e.g., RAID controller). <br>My first contribution is the design and implementation of WriteGuard– a self-tuning sieving write-buffer algorithm that filters writes as well as the highly-effective (but computationally-expensive) algorithms while requiring lightweight computation comparable to a simple LRU-based write-buffer. While WriteGuard reduces the capacity needed for DRAM buffering (to approx. 64 MB), it does not eliminate the need for DRAM buffers (and corresponding power backup).<br>For my second thrust, I identify two specific application characteristics – (1) the vast majority of the write-buffer’s contents is composed of write-dominant blocks, and (2) the vast majority of blocks in the write-buffer are overwritten within a period of 28 hours. I show that these characteristics help enable a high-density, optimized STT-MRAM as a replacement for DRAM, which enables durable write-buffers (thus eliminating the cost of power backup for the write-buffer). My optimized STT-MRAM-based write buffer achieves higher density by (a) trading off superfluous durability by exploiting characteristic (2), and (b) deoptimizing the read-performance of STT-MRAM by leveraging characteristic (1). Together, the techniques increase the density of STT-MRAM by 20% with low or no impact on write-buffer performance.<br>

Page generated in 0.084 seconds