Spelling suggestions: "subject:"brought alloys"" "subject:"drought alloys""
1 |
The Controlled Diffusion Solidification Process: Fundamentals and PrinciplesSymeonidis, Kimon 29 April 2009 (has links)
Aluminum based alloys can be broadly classified into two groups: casting alloys and wrought alloys. Wrought Al-based alloys exhibit superior physical and mechanical properties compared to the conventional shaped casting alloys. The wrought alloys cannot be cast into near net shapes, because they develop hot tears or hot cracks during the solidification process. For this reason these alloys are cast into ingots and are subsequently brought to final shape by mechanical processes like rolling, extrusion, drawing and forging. Invariably these processes significantly increase the cost of the final part up to 50%, and have restrained the application of the wrought alloys in applications where the cost is not a major factor. The CDS (Controlled Diffusion Solidification) is a novel process that bypasses the intermediate steps by casting the wrought alloy directly into final shape, free of hot tears, and eliminating additional deformation steps. The CDS process follows a different route from conventional casting methods. In CDS, two liquid metals of predetermined composition and temperature are mixed producing a globular microstructure instead of a dendritic one. The nondendritic microstructure minimizes the hot- tearing tendency and makes the wrought alloys more suitable to casting operations. The underlying principles and mechanisms of the CDS process have been established through both experimental work and the development of a mathematical model. The operating window of the process has been defined, and guidelines are proposed to enable application of the CDS process to various alloy systems. The reduction of the hot-tearing tendency in Al wrought alloys was experimentally verified.
|
2 |
Microstructure/property relationships in three high strength wrought magnesium alloys based on elektron 675Twier, Abdulhamied Moktar January 2011 (has links)
The object of the present investigation has been to relate the mechanical properties of a high strength Mg-Y-Gd alloy to alloy composition, extrusion parameters and microstructure. Three alloys with various Y: Gd ratios, of similar total solute content (at %) to Elektron 675, have been investigated in this study:9122: Mg – 6.5 wt % Y – 7.6 wt % Gd – 0.4 wt % Zr 9123: Mg – 8.2 wt % Y – 4.8 wt % Gd – 0.4 wt % Zr9124: Mg – 2.6 wt % Y – 13.1 wt % Gd – 0.4 wt % ZrThe three alloys were extruded at 425 and 475 °C with extrusion ratio 17: 1 to give two samples from each alloy, group a and b. Alloy 9122 was also extruded at 460 and 500 °C with extrusion ratio 10: 1 to give another two samples c and d. The as-cast microstructure of the three alloys comprised equiaxed α-magnesium grains and regions of eutectic decorating some grain boundaries formed during solidification of the ingot. Variation of extrusion parameters has resulted in a dispersion of different volume fractions of second phase particles in different groups of samples. The chemistry of second phase particles was determined by in-situ bulk energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD); magnesium yttrium was identified for near-equiaxed particles and yttrium hydride was proposed as a possible identification for cuboids. The composition of these compounds varied with variation of Y: Gd in the three alloys. Variation of extrusion ratio and extrusion temperature had a clear effect on the evolution of the extruded microstructure and the development of crystallographic texture as characterized by optical microscopy, electron backscattered diffraction (EBSD) and inverse pole figures. The microstructure of the extruded samples was refined during extrusion through dynamic recrystallization (DRX). Samples of groups a, b and c exhibited a microstructure in which bands of fine, equiaxed grains in association with stringers of second phase particles (running along the extrusion direction) were formed between bands of coarse, equiaxed grains. Sample d contained only small volume fraction of second phase particles; only a few alternating bands were formed and considerable grain growth occurred. A random texture was developed during extrusion in samples of groups a, b and c; a wide spread of orientations accompanied by a (new) previously unreported texture component in which basal poles of some grains are aligned nearly parallel to the extrusion direction was developed. The new texture component was weak in sample c and entirely suppressed in sample d. The asymmetry in tensile and compressive yield stress commonly associated with magnesium extrusions was nearly eliminated in samples of group a and b. The new basal texture component was likely to be a result of nucleation of DRX on sites rotating into this orientation. This is proposed to be a result of deformation in those regions in grains was accomodated by basal, prismatic and pyramidal slip. The grains nucleated in this orientation appear to have developed a form of preferred growth which led to strengthening of this new component following solution treatment. The effect of varying solute content (Y & Gd) and different ageing temperatures 150, 200, 250 and 300 °C (T5 & T6) on the ageing response and precipitation reaction were investigated using hardness measurements and transmission electron microscopy (TEM). Alloy 9122 showed the highest ageing response of the three alloys at 150, 200 and 250 °C (T5 & T6); specimens aged in the T5 gave higher hardness than the T6 treatment, a contribution of fine grain size. The three alloys did not respond to ageing at 300 °C. The precipitation reactions that occurred in alloy 9122 (at under, peak and overageing) and alloys 9123 and 9124 (at peak ageing) at 250 °C have been characterized. The precipitation sequence observed in sample 9122a can be described as: . The microstructure of peak aged specimens of alloys 9122 and 9124 were similar; both contained a homogeneous dispersion of precipitates and some metastable precipitates. Alloy 9123 contained only a homogeneous dispersion of precipitates and remnants of precipitates and no precipitates. The enhanced thermal stability of and phases are most likely responsible for the superior elevated temperature properties of Elektron 675. The effect of varying solute content (Y & Gd) and extrusion parameters on the mechanical properties were determined using tensile testing. Alloys 9122 and 9124 exhibited higher 0.2 % proof stress and UTS than alloy 9123 and alloy 9122 was the hardest alloy. Alloy 9122 exhibited the worst ductiliy (T5 and T6) among 9123 and 9124, and this was attributed to the higher volume fraction of second phase particles. The ductility of samples a, b and c in the as-extruded & T5 conditions, particularly in the transverse direction, was limited by stringers of second phase particles, whereas ductility and failure in sample d was governed by grain size and texture. The ductility and failure of all samples aged in the T6 treatment, irrespective of the extrusion history, was controlled by texture and grain size rather than stringers of second phase particles.
|
3 |
Fused metallic slurry coatings for improving the oxidation resistance of wrought alloysSegura-Cedillo, Ismael January 2011 (has links)
The aim of this project was to investigate the potential of fused-slurry coatings for improving the oxidation resistance of wrought alloys. Slurry-aluminised coatings were deposited on Alloy 800H (Fe-33Ni-20Cr), Alloy HCM12A (Fe-12Cr-2W), Alloy 214 (Ni-16Cr-4Al-3Fe), Fe-27Cr-4Al and Fe-14Cr-4Al alloys. The slurry contained a cellulose-based binder in an aqueous carrier and spherical aluminium powder, with a particle size below 20 microns. The slurries were applied with a paint-brush, dried in air and heat treated in either hydrogen or argon at temperatures between 700 and 1150C. The slurries were characterised by thermogravimetry, differential scanning calorimetry and viscometry. The coatings were characterised by optical microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction and Vickers hardness measurements. The oxidation resistance of selected slurry-coated specimens was assessed in air at 1000 and 1100C in tests lasting up to 1000 hours.Slurry-aluminising was found to be a simple, effective way of forming protective coatings that were similar in composition and microstructure to chemical vapour deposits. However, it was difficult to control the amount of slurry applied to the substrate and produce coatings of uniform thickness.The coatings on Alloy HCM12A and the Fe-Cr-Al alloys contained cracks in the brittle FeAl phase due to tensile stresses arising from differences in the thermal expansion coefficients of the substrates and the coatings. Rapid interdiffusion between the coatings and the ferritic substrates resulted in the appearance of Kirkendall voids.Coatings on Alloy 214 required a two-stage heat treatment to convert the brittle δ-Ni2Al3 to β-NiAl. Cracking along the coating/substrate interface was prevented by limiting the coating thickness to a maximum of 250 microns. During oxidation at 1100C, the β-NiAl was converted to γ'-Ni3Al. After 1000 h, the centre of the coating consisted chiefly of γ'-Ni3Al and bands of austenite (γ-Ni) were present at the inner and outer edges of the coating. The aluminium content at the coated surface was higher than the original aluminium content of the alloy, the protective alumina scale was improved and the oxidation life of the substrate was extended. An additional life of 1250 h at 1100C is estimated from a slurry coating before the aluminium content returns to that of the original alloy (4%), providing a potential improvement in oxidation resistance.Microstructural changes such as grain growth, sensitisation and formation of aluminium nitride particles near the coating/substrate interface, were detected in the alloy substrates after forming the slurry coatings. However, these microstructural changes did not detract from the good performance of the coatings during oxidation tests at 1100C.The work in this study has demonstrated a low-cost method of coating high-temperature alloys providing coatings with microstructures, densities and modes of degradation similar to those obtained by other coating methods. The coatings are potentially applicable to a wide range of high-temperature substrates.
|
4 |
PHD THESIS: CONTROLLED DIFFUSION SOLIDIFICATION PROCESS (CDS) OF AL-7XXX WROUGHT ALLOYS: HEAT TREATMENT,MICROSTRUCTURE, AND MECHANICAL PROPERTIESGHIAASIAAN, SEYED REZA 09 1900 (has links)
Casting, Solidification, Aluminum, Physical Metallurgy, Mechanical Metallurgy, Strengthening Model, Aluminum Wrought Alloys, Aluminum 7xxx Series, Al-Zn-Mg-Cu / Over the past decades, researchers in casting fields, especially in semi-solid metal state, have endeavored to find new ways to enable the Al wrought alloys of casting using the conventional casting processes; mainly in order to improve the product properties and decrease the product cost. The thixoforming and rheocasting processes have been presented as ways by which the microstructure of Al-base wrought alloys can be changed into non-dendritic, which in turn can lead to improvement to the mechanical properties. This can be because the effect of the non-dendritic microstructure on the mechanical properties of the material. Unfortunately, these processes have proved to be cost prohibitive and be a bit complicated for commercial applications. Further, conventional casting of Al-base wrought alloys along with their superior properties and performance have been a challenge for foundry industry due to the main disadvantage of hot tearing or hot cracking during solidification process. This can render the cast component ineffective. To overcome the disadvantages of thixoforming and rheocasting processes, Controlled Diffusion Solidification (CDS) process was innovated mainly to enable casting of aluminum wrought alloys with a non-dendritic morphology of the primary Al phase in the resultant cast microstructure and thus alleviating the problem of hot tearing and obtaining a cost effective product with improved mechanical properties. The CDS is a simple process involving mixing of two precursor alloys of different thermal masses (temperature and solute) and subsequently casting the resultant mixture of the desired solute composition and temperature as a near net shaped cast product. The process can easily be commercialized with a marginal capital cost required for set up such as the addition of an extra holding furnace. Further, the CDS process would prove itself to be unique in its ability to cast Al-based wrought alloys into near net shaped components without additional processes and cost.
The originality of this study is to present a viable casting process for the Al-7xxx wrought alloys (Al-Zn-Mg-Cu); by which the Al-7xxx family alloys are presented in cast condition to have an acceptable uniaxial property range that is comparable with their wrought counterparts.
This study presents the process and alloy parameters necessary for the casting of Al-7xxx wrought alloys (Al-Zn-Mg-Cu), by using the CDS process coupling with tilt pour gravity casting (TPGC) machine. The uniaxial tensile mechanical properties of several Al-7xxx CDS castings under various heat treatment conditions, namely, solutionizing (T4), peak aged (T6) and annealing (O), necessary for development of an ageing process on the material were investigated and presented. The tilt pour gravity casting process coupled with the CDS technology was employed to demonstrate the ability to cast Al-7xxx wrought alloys into high integrity components with high strength and ductility. The microstructure characterization was carried out by Electron Microscopy (TEM, SEM and EDS) and DSC test experiments for all the as cast (F), T4, T6 and anneals (O) conditions of the CDS cast components. Also, the predictive capabilities for the yield strength of Al 7xxx alloys CDS cast components was investigated using structural-properties modeling for the various strengthening effects that are recently proposed specifically for the Al-7xxx wrought counterparts.
The study has successfully led to a more in-depth understanding of the innovative CDS casting process by applying it to several compositions of Al-7xxx wrought alloys in an industrial scale CDS casting experiments, using tilt pour gravity casting (TPGC) machine. This will hopefully lead us to a clearer path towards commercializing the CDS process and obtaining a viable casting process for Al-base wrought alloys into near net shape components without much change to economics of the casting process. / Dissertation / Doctor of Philosophy (PhD) / Casting, Solidification, Aluminum, Physical Metallurgy, Mechanical Metallurgy, Strengthening Model, Aluminum Wrought Alloys, Aluminum 7xxx Series, Al-Zn-Mg-Cu
|
5 |
The Effect of Processing Parameters and Alloy Composition on the Microstructure Formation and Quality of DC Cast Aluminium AlloysJaradeh, Majed January 2006 (has links)
The objective of this research is to increase the understanding of the solidification behaviour of some industrially important wrought aluminium alloys. The investigation methods range from direct investigations of as-cast ingots to laboratory-scale techniques in which ingot casting is simulated. The methods span from directional solidification at different cooling rates to more fundamental and controlled techniques such as DTA and DSC. The microstructure characteristics of the castings have been investigated by optical and Scanning Electron microscopy. Hardness tests were used to evaluate the mechanical properties. The effects of adding alloying elements to 3XXX and 6XXX aluminium alloys have been studied with special focus on the effects of Zn, Cu, Si and Ti. These elements influence the strength and corrosion properties, which are important for the performance of final components of these alloys. Solidification studies of 0-5wt% Zn additions to 3003 alloys showed that the most important effect on the microstructure was noticed at 2.5 wt% Zn, where the structure was fine, and the hardness had a maximum. Si addition to a level of about 2% gave a finer structure, having a relatively large fraction of eutectic structure, however, it also gave a long solidification interval. The addition of small amounts of Cu, 0.35 and 1.0 wt%, showed a beneficial effect on the hardness. Differences have been observed in the ingot surface microstructures of 6xxx billets with different Mg and Si ratios. Excess Si compositions showed a coarser grain structure and more precipitations with possible negative implications for surface defect formation during DC casting. The comparison of alloys of different Ti content showed that the addition of titanium to a level of about 0.15 wt% gave a coarser grain structure than alloys with a normal Ti content for grain refinement, i.e. < 0.02 wt%, although a better corrosion resistance can be obtained at higher Ti contents. The larger grain size results in crack sensitivity during DC casting. A macroscopic etching technique was developed, based on a NaOH solution, and used in inclusion assessment along DC cast billets. Good quantitative data with respect to the size and spatial distribution of inclusions were obtained. The results from studied billets reveal a decreasing number of inclusions going from bottom to top, and the presence of a ring-shaped distribution of a large number of small defects in the beginning of the casting. The present study shows how composition modifications, i.e. additions of certain amounts of alloying elements to the 3xxx and 6xxx Al alloys, significantly change the microstructures of the materials, its castability, and consequently its mechanical properties / QC 20100901
|
Page generated in 0.053 seconds