• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

X-33 TELEMETRY BEST SOURCE SELECTION, PROCESSING, DISPLAY, AND SIMULATION MODEL COMPARISON

Burkes, Darryl A. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / The X-33 program requires the use of multiple telemetry ground stations to provide continuous coverage of the launch, ascent, re-entry and approach phases for flights from Edwards AFB, California, to landings at Dugway Proving Grounds, Utah, and Malmstrom AFB, Montana. This paper will discuss the X-33 telemetry requirements and design, including information on the fixed and mobile telemetry systems, automated best source selection system, processing/display support for range safety officers (RSO) and range engineers, and comparison of real-time data with simulated data using the Dynamic Ground Station Analysis model. Due to the use of multiple ground stations and short duration flights, the goal throughout the X-33 missions is to automatically provide the best telemetry source for critical vehicle performance monitoring. The X-33 program was initiated by National Aeronautics and Space Administration (NASA) Cooperative Agreement No. NCC8-115 with Lockheed Martin Skunk Works (LMSW).
2

THE X-33 EXTENDED FLIGHT TEST RANGE

Mackall, Dale A., Sakahara, Robert, Kremer, Steven E. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
3

Trajectory design, optimisation and guidance for reusable launch vehicles during the terminal area flight phase.

Chartres, James T. A. January 2007 (has links)
The next generation of reusable launch vehicles (RLVs) require significant improvements in guidance methods in order to reduce cost, increase safety and flexibility, whilst allowing for possible autonomous operation. Research has focused on the ascent and hypersonic re-entry flight phases. This thesis presents a new method for trajectory design, optimisation and guidance of RLVs during the terminal area flight phases. The terminal area flight phase is the transitional phase from hypersonic re-entry to the approach and landing phase. The trajectory design, optimisation and guidance methods within this thesis are an evolution of previous work conducted on the ascent and re-entry flight phases of RLVs. The methods are modified to incorporate the terminal area flight phase through the adaption of the problem definition and the inclusion of the speed brake setting as a steering parameter. The methods discussed and developed in this thesis are different to previous methods for the terminal area flight phase as they encompass optimisation, trajectory design and guidance based on the definition of the steering parameters. The NLPQL nonlinear optimiser contained within the International Mathematics Standards Library (IMSL) is utilised for trajectory design and optimisation. Real-time vehicle guidance is achieved using the restoration steps of an accelerated Gradient Projection Algorithm (GPA). The methods used are evaluated in a three degrees of freedom (3DOF) simulation environment. To properly evaluate the programs and gain a better understanding of the terminal area flight phase, two different vehicles are utilised within this study. These vehicles are the German sub-orbital Hopper concept vehicle, a previously proposed replacement for the Ariane series of launch vehicles and the recently cancelled joint National Aeronautics and Space Administration (NASA) and Lockheed Martin sub-orbital test bed vehicle, X-33. The two vehicles each have a terminal area flight phase, but their mission profiles and vehicle characteristics are significantly different. The Hopper vehicle is a winged re-entry vehicle, whereas the X-33 vehicle is a lifting body. The trajectory design method takes into account the initial and final conditions, in-flight restrictions such as dynamic pressure and vehicle loads as well as safety margins. The designed trajectories are evaluated to analyse the terminal area flight phase and to assist in the development of the guidance program. The guidance method is evaluated utilising an program consisting of two parts, a real world simulator with high order models and a representation of the on-board guidance computer, the predictor, which uses low order models for computational efficiency. The guidance method is evaluated against a variety of off-nominal conditions to account for dispersions within the high order real world models and common errors experienced by re-entry vehicles. These off-nominal conditions include atmospheric disturbances, winds, aerodynamic, mass, navigation, steering and initial condition errors. The results of this study include a detailed analysis of the terminal area flight phase highlighting the major influences for vehicle and trajectory design. The study also confirms the applicability of the non-linear programming method utilising the vehicle steering parameters as a viable option for trajectory design and guidance. A comparison to other available results highlights the strengths and weaknesses of the proposed method. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1282342 / Thesis (Ph.D.)--School of Mechanical Engineering, 2007.
4

X-33 INTEGRATED TEST FACILITY EXTENDED RANGE SIMULATION

Sharma, Ashley 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base, Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of the various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
5

MOBILE OPERATIONS FACILITY IN SUPPORT OF THE X-33 EXTENDED TEST RANGE ALLIANCE

Palmer, Robert, Wolf, Glen 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / NASA and the Air Force are increasing the number of hypersonic and access-to-space programs creating a growing requirement for flight test ranges over large regional areas. A principal challenge facing these extended test ranges is the ability to provide continuous vehicle communications by filling the gaps in coverage between fixed ground stations. Consequently, there is a need for mobile range systems that provide a multitude of communication services under varying circumstances. This paper discusses the functional design and systems capabilities, as well as the mission support criteria, concerning NASA’s Mobile Operations Facility (MOF). The MOF will be deployed to Dugway Proving Grounds (DPG), Utah, in support of the X-33 single-stage-to-orbit (SSTO) demonstrator.
6

The X-33 and the X-38 experimental aircraft: environmental connections with aerospace science

Martin, Elandriel Jean 01 January 2001 (has links)
The purpose of this project fosters in students a sense of place and connection with their home area. It also provides students a real-world basis upon which to study the concepts of weather and geography.

Page generated in 0.0264 seconds