• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phenotypic and biochemical characterisation of the causal agent of bacterial leaf streak of maize / Nienaber

Nienaber, Jesse Jay January 2015 (has links)
Maize is the staple food for a majority of people in Southern Africa, but plant diseases are responsible for at least 10% of crop production losses. Bacterial leaf streak (BLS) of maize was first reported in South Africa in 1949 and has not been reported elsewhere. Very little is known about the pathogen involved and therefore it is deemed necessary to compile a characteristic profile for the pathogen to prevent the possibility of major crop losses as a result of this disease. This study aimed to use biochemical and phenotypic methods to determine the specific characteristics of the causal agent of BLS. Diseased plant material showing symptoms of BLS were collected during the maize production seasons of 2012 and 2013 within South Africa’s maize production regions namely the North West, Free State, Gauteng and Northern Cape provinces. To prevent contamination, maize leaves were surface sterilised thoroughly before bacterial isolation commenced. Sections of the infected maize leaves were placed on GYC agar plates on which yellow, mucoid bacterial colonies after incubation for 24 to 48 hrs. The isolated bacteria were purified and the molecular identification of the bacteria was conducted in a related study. Although literature indicates that Xanthomonas campestris pv. zeae is the causal agent of BLS, pure cultures obtained from maize leaves showing characteristic symptoms of BLS were identified as species of Xanthomonas, Pantoea, and Enterobacter. To elucidate the pathogenicity of the isolated strains, pathogenicity tests based on Koch’s postulates were performed. Results from the pathogenicity tests confirmed that only the isolate Xanthomonas species was capable of inducing the characteristic BLS symptoms when healthy maize plants were inoculated with the suspected pathogens. It is important to inoculate the maize seedlings at the correct age (four-leaf stage) and the spray method is recommended. Re-isolation was repeated from the same plant material used during the initial isolation process but the isolation method was amended. The optimised isolation method involved the use of a dilution range and spread plate method. Colonies from this isolation technique grew as bright yellow colonies that were identified as Xanthomonas spp. This outcome indicates the importance of surface sterilisation, pulverisation and subsequent dilution of plant materials for isolation of bacterial pathogens from diseases plants. These isolates were used to create protein profiles with SDS-PAGE electrophoresis and carbon utilisation patterns with the Biolog® GN2 system. Protein profiling banding patterns was assessed based on presence/absence criteria. Highly similar protein profiles were observed among the X. campestris pv. zeae isolates but groupings of different protein profiles were determined when minor differences in the protein profiles was taken into account. Xanthomonas campestris pv. zeae was successfully distinguished from the X. axonopodis pv. vasculorum reference strain through unique SDS banding patterns. Banding patterns obtained from cultures grown in a liquid medium (tryptic soy broth) were of a higher quality than the banding patterns obtained from bacteria harvested from solid media (CYG agar plates). Carbon source utilisation data was used to evaluate the average well colour development obtained from each isolate. Statistically significant differences were found among some of the isolates, with some isolates being metabolically more active than other isolates. Substrate utilisation patterns produced by the isolates corresponded to previously published studies on various Xanthomonas species. The cell count of the samples used during carbon utilisation patterns must be standardised in order to obtain reliable results. During this study, the application of Koch’s postulates and two inoculation techniques confirmed that Xanthomonas campestris pv. zeae is the pathogen responsible for bacterial leaf streak of maize. Members of the Pantoea and Enterobacter genera were found on the leaf surface of maize plants infected with BLS but inoculations of healthy maize plants with these bacteria did not result in bacterial leaf streak symptoms on the maize plants. These bacteria were not pathogenic and were considered endophytes. The identified pathogen was characterised through protein and metabolic profiling. The protein profiles of the pathogen obtained through analysis of the major bands of the SDS-PAGE gels were highly similar and distinguishable from the Xanthomonas reference culture. Groupings within the X. campestris pv. zeae group was found when major and minor bands were considered, this may however be altered when the intensities of the bands are used during analysis. Carbon utilisation patterns were assessed using Biolog® GN2 plates. A metabolic fingerprint was created for the pathogen of BLS, it was possible to distinguish between X. campestris pv. zeae and other Xanthomonas strains based on the fingerprint. This fingerprint could be used to identify the pathogen. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
2

Phenotypic and biochemical characterisation of the causal agent of bacterial leaf streak of maize / Nienaber

Nienaber, Jesse Jay January 2015 (has links)
Maize is the staple food for a majority of people in Southern Africa, but plant diseases are responsible for at least 10% of crop production losses. Bacterial leaf streak (BLS) of maize was first reported in South Africa in 1949 and has not been reported elsewhere. Very little is known about the pathogen involved and therefore it is deemed necessary to compile a characteristic profile for the pathogen to prevent the possibility of major crop losses as a result of this disease. This study aimed to use biochemical and phenotypic methods to determine the specific characteristics of the causal agent of BLS. Diseased plant material showing symptoms of BLS were collected during the maize production seasons of 2012 and 2013 within South Africa’s maize production regions namely the North West, Free State, Gauteng and Northern Cape provinces. To prevent contamination, maize leaves were surface sterilised thoroughly before bacterial isolation commenced. Sections of the infected maize leaves were placed on GYC agar plates on which yellow, mucoid bacterial colonies after incubation for 24 to 48 hrs. The isolated bacteria were purified and the molecular identification of the bacteria was conducted in a related study. Although literature indicates that Xanthomonas campestris pv. zeae is the causal agent of BLS, pure cultures obtained from maize leaves showing characteristic symptoms of BLS were identified as species of Xanthomonas, Pantoea, and Enterobacter. To elucidate the pathogenicity of the isolated strains, pathogenicity tests based on Koch’s postulates were performed. Results from the pathogenicity tests confirmed that only the isolate Xanthomonas species was capable of inducing the characteristic BLS symptoms when healthy maize plants were inoculated with the suspected pathogens. It is important to inoculate the maize seedlings at the correct age (four-leaf stage) and the spray method is recommended. Re-isolation was repeated from the same plant material used during the initial isolation process but the isolation method was amended. The optimised isolation method involved the use of a dilution range and spread plate method. Colonies from this isolation technique grew as bright yellow colonies that were identified as Xanthomonas spp. This outcome indicates the importance of surface sterilisation, pulverisation and subsequent dilution of plant materials for isolation of bacterial pathogens from diseases plants. These isolates were used to create protein profiles with SDS-PAGE electrophoresis and carbon utilisation patterns with the Biolog® GN2 system. Protein profiling banding patterns was assessed based on presence/absence criteria. Highly similar protein profiles were observed among the X. campestris pv. zeae isolates but groupings of different protein profiles were determined when minor differences in the protein profiles was taken into account. Xanthomonas campestris pv. zeae was successfully distinguished from the X. axonopodis pv. vasculorum reference strain through unique SDS banding patterns. Banding patterns obtained from cultures grown in a liquid medium (tryptic soy broth) were of a higher quality than the banding patterns obtained from bacteria harvested from solid media (CYG agar plates). Carbon source utilisation data was used to evaluate the average well colour development obtained from each isolate. Statistically significant differences were found among some of the isolates, with some isolates being metabolically more active than other isolates. Substrate utilisation patterns produced by the isolates corresponded to previously published studies on various Xanthomonas species. The cell count of the samples used during carbon utilisation patterns must be standardised in order to obtain reliable results. During this study, the application of Koch’s postulates and two inoculation techniques confirmed that Xanthomonas campestris pv. zeae is the pathogen responsible for bacterial leaf streak of maize. Members of the Pantoea and Enterobacter genera were found on the leaf surface of maize plants infected with BLS but inoculations of healthy maize plants with these bacteria did not result in bacterial leaf streak symptoms on the maize plants. These bacteria were not pathogenic and were considered endophytes. The identified pathogen was characterised through protein and metabolic profiling. The protein profiles of the pathogen obtained through analysis of the major bands of the SDS-PAGE gels were highly similar and distinguishable from the Xanthomonas reference culture. Groupings within the X. campestris pv. zeae group was found when major and minor bands were considered, this may however be altered when the intensities of the bands are used during analysis. Carbon utilisation patterns were assessed using Biolog® GN2 plates. A metabolic fingerprint was created for the pathogen of BLS, it was possible to distinguish between X. campestris pv. zeae and other Xanthomonas strains based on the fingerprint. This fingerprint could be used to identify the pathogen. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
3

Molecular characterisation of the causal agent of bacterial leaf streak of maize / Nicolaas Johannes Jacobus Niemann

Niemann, Nicolaas Johannes Jacobus January 2015 (has links)
All members of the genus Xanthomonas are considered to be plant pathogenic, with specific pathovars infecting several high value agricultural crops. One of these pathovars, X. campestris pv. zeae (as this is only a proposed name it will further on be referred to as Xanthomonas BLSD) the causal agent of bacterial leaf steak of maize, has established itself as a widespread significant maize pathogen within South Africa. Insufficient information about the present distribution of the pathogen is available. The main aim of the study was thus to isolate and characterise the pathogen using molecular methods. Results demonstrated that the causal agent of bacterial leaf streak disease (Xanthomonas BLSD: potentially X. campestris pv. zeae) was widely distributed within the major maize cultivation regions of South Africa. Most of the isolates collected originated from the Highveld maize production provinces (North West, Free State, Gauteng and Mpumalanga provinces) as well as from irrigated maize fields in the Northern Cape province. The XgumD gene marker was used to determine if the isolates belonged to the genus Xanthomonas. The gumD gene fragment is located within the gumB-gumM region of the operon and is conserved among Xanthomonas species. This gene fragment is partially responsible for xanthan production. This marker was amplified from all isolates and a selected number were sequenced. The marker was only able to confirm that the causal agent was a member of the genus Xanthomonas. PCR methods were used for the characterisation of the isolates. This included PCR and sequencing of ribosomal RNA- gyraseB and gumD genes. A fingerprinting method BOX-PCR was also employed. Good quality DNA of sufficient quantities was obtained from the various isolates. Amplification produced no non-specific amplification products. This resulted in good quality sequences that could be analysed using bioinformatics tools. Phylogenetic analyses of the ribosomal RNA and gyraseB genes could not detect differences amongst the 47 Xanthomonas BLSD isolates. However, these genes were able to distinguish between the type strain of these isolates and various Xanthomonas species and pathovars. From all three neighbour joining trees the Xanthomonas BLSD isolates had close association with X. axonopodis pv. vasculorum strain ATCC 35938. For the 16S rRNA gene there exists no sequence differences between Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938. A single nucleotide difference was observed between Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938 for the 23S rRNA gene. The gyraseB gene detected a total of six nucleotide variations between these two Xanthomonas species. For all of the phylogenetic trees there was no clustering of Xanthomonas BLSD with X. campestris pathovars. Genetic profiling (via BOX-PCR) based on present/absent analysis revealed no variations amongst the Xanthomonas BLSD isolates. All isolates shared an identical pattern produced by 12 distinct PCR products. This profiling technique did differentiate between the isolates of Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938. Their profiles shared common bands, but differed in the number and overall pattern of the bands. These results suggest two main conclusions: (i) Xanthomonas BLSD has a clonal origin with geographical separation not impacting genetic variation. The fact that all the isolates appear to be clonal may imply that when resistant maize cultivars are developed these should be resistant to all isolates of the pathovar irrespective of their geographical origin. This is a suggestion that will have to be corroborated using more isolates and additional genetic fingerprinting techniques (ii) the Xanthomonas BLSD isolates from this study may not belong to X. campestris. Further studies using other markers should be conducted to determine the real identity of Xanthomonas BLSD. / MSc Environmental Sciences, North-West University, Potchefstroom Campus, 2015
4

Molecular characterisation of the causal agent of bacterial leaf streak of maize / Nicolaas Johannes Jacobus Niemann

Niemann, Nicolaas Johannes Jacobus January 2015 (has links)
All members of the genus Xanthomonas are considered to be plant pathogenic, with specific pathovars infecting several high value agricultural crops. One of these pathovars, X. campestris pv. zeae (as this is only a proposed name it will further on be referred to as Xanthomonas BLSD) the causal agent of bacterial leaf steak of maize, has established itself as a widespread significant maize pathogen within South Africa. Insufficient information about the present distribution of the pathogen is available. The main aim of the study was thus to isolate and characterise the pathogen using molecular methods. Results demonstrated that the causal agent of bacterial leaf streak disease (Xanthomonas BLSD: potentially X. campestris pv. zeae) was widely distributed within the major maize cultivation regions of South Africa. Most of the isolates collected originated from the Highveld maize production provinces (North West, Free State, Gauteng and Mpumalanga provinces) as well as from irrigated maize fields in the Northern Cape province. The XgumD gene marker was used to determine if the isolates belonged to the genus Xanthomonas. The gumD gene fragment is located within the gumB-gumM region of the operon and is conserved among Xanthomonas species. This gene fragment is partially responsible for xanthan production. This marker was amplified from all isolates and a selected number were sequenced. The marker was only able to confirm that the causal agent was a member of the genus Xanthomonas. PCR methods were used for the characterisation of the isolates. This included PCR and sequencing of ribosomal RNA- gyraseB and gumD genes. A fingerprinting method BOX-PCR was also employed. Good quality DNA of sufficient quantities was obtained from the various isolates. Amplification produced no non-specific amplification products. This resulted in good quality sequences that could be analysed using bioinformatics tools. Phylogenetic analyses of the ribosomal RNA and gyraseB genes could not detect differences amongst the 47 Xanthomonas BLSD isolates. However, these genes were able to distinguish between the type strain of these isolates and various Xanthomonas species and pathovars. From all three neighbour joining trees the Xanthomonas BLSD isolates had close association with X. axonopodis pv. vasculorum strain ATCC 35938. For the 16S rRNA gene there exists no sequence differences between Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938. A single nucleotide difference was observed between Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938 for the 23S rRNA gene. The gyraseB gene detected a total of six nucleotide variations between these two Xanthomonas species. For all of the phylogenetic trees there was no clustering of Xanthomonas BLSD with X. campestris pathovars. Genetic profiling (via BOX-PCR) based on present/absent analysis revealed no variations amongst the Xanthomonas BLSD isolates. All isolates shared an identical pattern produced by 12 distinct PCR products. This profiling technique did differentiate between the isolates of Xanthomonas BLSD and X. axonopodis pv. vasculorum strain ATCC 35938. Their profiles shared common bands, but differed in the number and overall pattern of the bands. These results suggest two main conclusions: (i) Xanthomonas BLSD has a clonal origin with geographical separation not impacting genetic variation. The fact that all the isolates appear to be clonal may imply that when resistant maize cultivars are developed these should be resistant to all isolates of the pathovar irrespective of their geographical origin. This is a suggestion that will have to be corroborated using more isolates and additional genetic fingerprinting techniques (ii) the Xanthomonas BLSD isolates from this study may not belong to X. campestris. Further studies using other markers should be conducted to determine the real identity of Xanthomonas BLSD. / MSc Environmental Sciences, North-West University, Potchefstroom Campus, 2015

Page generated in 0.0512 seconds